Exercice 1 (6 points)

Cet exercice porte sur les bases de données et les requétes SQL, les arbres binaires
et les algorithmes sur les arbres binaires.

Partie A

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

* construire des requétes d’interrogation a I'aide de SELECT , FROM , WHERE (avec
les opérateurs logiqgues AND , OR), JOIN ... ON;

» construire des requétes d’insertion et de mise a jour a l'aide de UPDATE ,
INSERT , DELETE.

Une exoplanéte est une planéte située hors du systéme solaire. La plupart des
exoplanétes découvertes a ce jour orbitent autour d’'une unique étoile.

Une étoile est repérée précisément dans le ciel par son ascension droite et sa
déclinaison (voir Figure 1). La direction de coordonnées (0, 0) est une direction fixe
du ciel servant d’origine de ce systéme de coordonnées.

Etoile

Déclinaison

Ascension droite

Figure 1. Coordonnées d’une étoile (adaptée depuis
https://commons.wikimedia.org/wiki/File:Coordonnees_equatoriales.svg)

On considére dans cet exercice deux relations décrivant des étoiles et les exoplanétes
orbitant autour d’elles :
» larelation Etoi les contient les informations décrivant des étoiles :
— id_etoi le : l'identifiant unique de I'étoile (nombre entier) ;
— nom: le nom de I'étoile (chaine de caracteres) ;
— ascension : I'ascension droite de I'étoile en degré (nombre réel) ;

— declinaison : la déclinaison de I'étoile en degré (nombre réel).

25-NSI1J1AS1 Page:2/21

» larelation Exoplanetes contient les informations décrivant des exoplanetes :
— i1d_exoplanete : I'identifiant unique de I'exoplanete (hombre entier) ;

— masse : la masse de I'exoplanete, exprimée sous la forme d’une fraction
de la masse de la planete Jupiter (nombre réel) ;

— rayon : le rayon de I'exoplanete, exprimée sous la forme d’une fraction
du rayon de la planéte Jupiter (hnombre réel) ;

— 1d_etoile: lidentifiant de I'étoile autour de laquelle orbite I'exoplanéte
(nombre entier).

Une exoplanéte dont l'attribut masse est égal a 6.84 a une masse 6,84 fois plus
grande que celle de la planete Jupiter.

On fournit ci-dessous des extraits de ces deux tables :

Etoiles
id_etoile nom ascension declinaison
1 109 Psc 26.23 20.08
2 beta Pic 86.82 -51.07
3 K2-21 340.30 -14.49
4 Kepler-11 297.12 41.91
Exoplanetes
id_exoplanete masse rayon id_etoile
1 6.84 1.15 1
2 11.90 1.65 2
3 8.89 1.20 2
4 0.01 0.16 3
5 0.02 0.22 3
6 0.01 0.16 4
7 0.01 0.26 4

L'attribut 1d_exoplanete est la clé primaire de la relation Exoplanetes. L'attribut

id_etoile est la clé primaire de la relation Etoi les.

1. Expliquer pourquoi l'attribut masse de la relation Exoplanetes ne peut pas
servir de clé primaire de cette relation.

25-NSI1J1AS1

Page:3/21

2. Donner le nom de l'attribut pouvant étre utilisé comme clé étrangere dans la
relation Exoplanetes. Expliquer son réle.

3. Donner le résultat de la requéte SQL suivante :

SELECT masse, rayon
FROM Exoplanetes
WHERE 1d_exoplanete = 4;

4. Ecrire une requéte SQL permettant d’obtenir I'identifiant et le nom des étoiles
dont I'ascension droite est supérieure ou égale a 100 degrés.

On souhaite insérer une nouvelle exoplanéte de rayon égal a 0,37 fois celui de Jupiter
et pesant 0,03 fois la masse de Jupiter. Cette exoplanete orbite autour de I'étoile
Kepler-11 dont l'identifiant est 4. On pourra attribuer a cette nouvelle exoplanete
l'identifiant 9 qui n'apparait pas dans la relation Exoplanetes.

5. Ecrire une requéte SQL permettant d'insérer cette nouvelle exoplanéte dans la
base de données.

6. Ecrire une requéte SQL permettant d’obtenir les rayons des exoplanétes
orbitant autour de I'étoile nommée Kepler-11, dont l'identifiant est supposé non
connu.

Partie B

On souhaite désormais écrire une application Python permettant de classer et de
retrouver efficacement les étoiles selon leur position dans le ciel.

On rappelle qu'une étoile est repérée par son ascension droite et sa déclinaison. Par
souci de simplicité, on considére désormais que deux étoiles ont toujours des
coordonnées entieres et distinctes. On représente en Python les coordonnées d’'une
etoile par un tuple d’entiers (ascension, declinaison).

Dans la suite, on considere les étoiles dont les coordonnées sont contenues dans la
liste de tuples etoi les définie par etoiles = [(29, 21), (17, 14), (10,
30), (35, 13), (30, 63), (15, 20)].

On cherche a construire un arbre binaire de recherche a partir des coordonnées
présentes dans la liste etoiles afin d’accélérer les opérations de traitement sur
celles-ci. Pour cela :

* on commence par trier la liste etoiles par ordre croissant, afin que l'arbre
résultant soit de hauteur minimale ;

e pour construire I'arbre binaire de recherche a partir des éléments de la liste
etoiles compris entre les indices debut (inclu) et Fin (exclu) :

— laracine de l'arbre est I'élément d’indice mi 1 ieu définit par
milieu = (debut + fin)//2;

25-NSI1J1AS1 Page:4/21

— on construit récursivement le sous arbre gauche a l'aide des éléments
de la liste etoi les compris entre les indices debut (inclu) et milieu
(exclu) ;

— on construit récursivement le sous arbre droit & I'aide des éléments de la
liste etoiles compris entre les indices millieu + 1 (inclu) et Fin
(exclu).

Pour implémenter cet algorithme, on représente en Python les arbres binaires non
vides a l'aide de tuples de trois éléments (sag, position, sad) dans lesquels:

- position estlavaleur de laracine. Cette valeur est le couple de coordonnées
permettant de repérer I'étoile ;

- sag et sad sont respectivement les sous-arbres gauche et droit de I'arbre.
L’arbre vide est quant & lui représenté par None.

On rappelle que I'on peut comparer des tuples en Python a I'aide de I'opérateur < : on
compare tout d’abord les valeurs a l'indice O de chaque couple puis, en cas d’égalite,
celles a l'indice 1.

Ainsi, les expressions (1, 4) < (2, 3) et (1, 4) < (1, 6) s’évaluent toutes
les deux a True.

La fonction sorted de Python prend en argument une liste et renvoie une nouvelle
liste contenant les mémes valeurs triées dans I'ordre croissant a I'aide de 'opérateur <.

7. Donner la liste renvoyée par l'instruction sorted(etoiles).

8. Dessiner l'arbre binaire représenté par le tuple (((None, (1, 34),
None), (2, 35), None), (11, 36), (None, (17, 30), None)).

L’arbre construit a partir de la liste etoi les a donc pour représentation Python :

(((None, (10, 30), None), (15, 20), (None, (17, 14), None)),
(29, 21), ((None, (30, 63), None), (35, 13), None))

Il est représenté sur la Figure 2 ci-apres.

25-NSI1J1AS1 Page:5/21

{29 21)

N

(15, 20) (35, 13)

N [

(10, 30) (17, 14) (30, 63)

Figure 2. Arbre associé a la liste etoiles
9. Dessiner l'arbre binaire de recherche obtenu a partir de la liste :
[(1, 33), (2, 30), (2, 33), (4, 30), (8, 39)]

10. Recopier et compléter les lignes 3, 7, 8, 9 et 11 du code de la fonction
construction qui prend en parameétres une liste etoi les supposée triée par
ordre croissant, ainsi que deux entiers debut et Fin. Cette fonction renverra
'arbre binaire de recherche associé aux coordonnées présentes entre les
indices debut (inclus) et fin (exclu) de la liste etoi les.

Par exemple, I'appel initial permettant de construire I'arbre associé a la liste
etoiles est construction(etoiles, 0, 6).

L’indice du milieu est 3, le sous-arbre gauche est renvoyé par I'appel
construction(etoiles, 0, 3) etle sous-arbre droit par
construction(etoiles, 4, 6).

1 def construction(etoiles, debut, fin):

2 if debut == fin:

3 return ...

4

5 milieu = (debut + fin) // 2
6

7 sag = construction(...)

8 racine = ...

9 sad = ...

10

11 return ...

11. Ecrire le code de la fonction en_arbre qui prend en paramétre une liste
etoi les de couples de coordonnées non triés et renvoie I'arbre construit selon
la démarche décrite plus haut. On pourra utiliser la fonction construction de
la question précédente.

On souhaite désormais écrire une fonction contient qui prend en parametres un
arbre binaire de recherche arbre tel que renvoyé par la fonction construction ainsi

25-NSI1J1AS1 Page :6/21

gu’'un tuple d’entiers position représentant les coordonnées d’une étoile. Cette
fonction renvoie True si I'arbre contient cette étoile, False dans le cas contraire.

12. Recopier et compléter les lignes 3, 8, 9, 10 et 12 du code de la fonction
contient.

1 def contient(arbre, position):

2 if arbre is None:

3 return

4

5 sag, valeur, sad = arbre
6

7 1T position < valeur:

8 return contient(..., ...)
9 elif ___:

10 return

11 else:

12 return

25-NSI1J1AS1 Page:7/21

