
25-NSIJ1AS1 Page : 2 / 21

Exercice 1 (6 points)

Cet exercice porte sur les bases de données et les requêtes SQL, les arbres binaires
et les algorithmes sur les arbres binaires.

Partie A

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT , FROM , WHERE (avec
les opérateurs logiques AND , OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE ,
INSERT , DELETE.

Une exoplanète est une planète située hors du système solaire. La plupart des
exoplanètes découvertes à ce jour orbitent autour d’une unique étoile.

Une étoile est repérée précisément dans le ciel par son ascension droite et sa
déclinaison (voir Figure 1). La direction de coordonnées (0, 0) est une direction fixe
du ciel servant d’origine de ce système de coordonnées.

Figure 1. Coordonnées d’une étoile (adaptée depuis
https://commons.wikimedia.org/wiki/File:Coordonnees_equatoriales.svg)

On considère dans cet exercice deux relations décrivant des étoiles et les exoplanètes
orbitant autour d’elles :

• la relation Etoiles contient les informations décrivant des étoiles :

– id_etoile : l’identifiant unique de l’étoile (nombre entier) ;

– nom : le nom de l’étoile (chaîne de caractères) ;

– ascension : l’ascension droite de l’étoile en degré (nombre réel) ;

– declinaison : la déclinaison de l’étoile en degré (nombre réel).

25-NSIJ1AS1 Page : 3 / 21

• la relation Exoplanetes contient les informations décrivant des exoplanètes :

– id_exoplanete : l’identifiant unique de l’exoplanète (nombre entier) ;

– masse : la masse de l’exoplanète, exprimée sous la forme d’une fraction
de la masse de la planète Jupiter (nombre réel) ;

– rayon : le rayon de l’exoplanète, exprimée sous la forme d’une fraction
du rayon de la planète Jupiter (nombre réel) ;

– id_etoile : l’identifiant de l’étoile autour de laquelle orbite l’exoplanète
(nombre entier).

Une exoplanète dont l’attribut masse est égal à 6.84 a une masse 6,84 fois plus
grande que celle de la planète Jupiter.

On fournit ci-dessous des extraits de ces deux tables :

Etoiles

id_etoile nom ascension declinaison

1 109 Psc 26.23 20.08

2 beta Pic 86.82 -51.07

3 K2-21 340.30 -14.49

4 Kepler-11 297.12 41.91

Exoplanetes

id_exoplanete masse rayon id_etoile

1 6.84 1.15 1

2 11.90 1.65 2

3 8.89 1.20 2

4 0.01 0.16 3

5 0.02 0.22 3

6 0.01 0.16 4

7 0.01 0.26 4

L’attribut id_exoplanete est la clé primaire de la relation Exoplanetes. L’attribut
id_etoile est la clé primaire de la relation Etoiles.

1. Expliquer pourquoi l’attribut masse de la relation Exoplanetes ne peut pas
servir de clé primaire de cette relation.

25-NSIJ1AS1 Page : 4 / 21

2. Donner le nom de l’attribut pouvant être utilisé comme clé étrangère dans la
relation Exoplanetes. Expliquer son rôle.

3. Donner le résultat de la requête SQL suivante :

 SELECT masse, rayon
FROM Exoplanetes
WHERE id_exoplanete = 4;

4. Écrire une requête SQL permettant d’obtenir l’identifiant et le nom des étoiles
dont l’ascension droite est supérieure ou égale à 100 degrés.

On souhaite insérer une nouvelle exoplanète de rayon égal à 0,37 fois celui de Jupiter
et pesant 0,03 fois la masse de Jupiter. Cette exoplanète orbite autour de l’étoile
Kepler-11 dont l’identifiant est 4. On pourra attribuer à cette nouvelle exoplanète
l’identifiant 9 qui n’apparaît pas dans la relation Exoplanetes.

5. Écrire une requête SQL permettant d’insérer cette nouvelle exoplanète dans la
base de données.

6. Écrire une requête SQL permettant d’obtenir les rayons des exoplanètes
orbitant autour de l’étoile nommée Kepler-11, dont l’identifiant est supposé non
connu.

Partie B

On souhaite désormais écrire une application Python permettant de classer et de
retrouver efficacement les étoiles selon leur position dans le ciel.

On rappelle qu’une étoile est repérée par son ascension droite et sa déclinaison. Par
souci de simplicité, on considère désormais que deux étoiles ont toujours des
coordonnées entières et distinctes. On représente en Python les coordonnées d’une
étoile par un tuple d’entiers (ascension, declinaison).

Dans la suite, on considère les étoiles dont les coordonnées sont contenues dans la
liste de tuples etoiles définie par etoiles = [(29, 21), (17, 14), (10,
30), (35, 13), (30, 63), (15, 20)].

On cherche à construire un arbre binaire de recherche à partir des coordonnées
présentes dans la liste etoiles afin d’accélérer les opérations de traitement sur
celles-ci. Pour cela :

• on commence par trier la liste etoiles par ordre croissant, afin que l’arbre
résultant soit de hauteur minimale ;

• pour construire l’arbre binaire de recherche à partir des éléments de la liste
etoiles compris entre les indices debut (inclu) et fin (exclu) :

– la racine de l’arbre est l’élément d’indice milieu définit par

 milieu = (debut + fin)//2 ;

25-NSIJ1AS1 Page : 5 / 21

– on construit récursivement le sous arbre gauche à l’aide des éléments
de la liste etoiles compris entre les indices debut (inclu) et milieu
(exclu) ;

– on construit récursivement le sous arbre droit à l’aide des éléments de la
liste etoiles compris entre les indices milieu + 1 (inclu) et fin
(exclu).

Pour implémenter cet algorithme, on représente en Python les arbres binaires non
vides à l’aide de tuples de trois éléments (sag, position, sad) dans lesquels :

- position est la valeur de la racine. Cette valeur est le couple de coordonnées
permettant de repérer l’étoile ;

- sag et sad sont respectivement les sous-arbres gauche et droit de l’arbre.

L’arbre vide est quant à lui représenté par None.

On rappelle que l’on peut comparer des tuples en Python à l’aide de l’opérateur < : on
compare tout d’abord les valeurs à l’indice 0 de chaque couple puis, en cas d’égalité,
celles à l’indice 1.

Ainsi, les expressions (1, 4) < (2, 3) et (1, 4) < (1, 6) s’évaluent toutes
les deux à True.

La fonction sorted de Python prend en argument une liste et renvoie une nouvelle
liste contenant les mêmes valeurs triées dans l’ordre croissant à l’aide de l’opérateur <.

7. Donner la liste renvoyée par l’instruction sorted(etoiles).

8. Dessiner l’arbre binaire représenté par le tuple (((None, (1, 34),
None), (2, 35), None), (11, 36), (None, (17, 30), None)).

L’arbre construit à partir de la liste etoiles a donc pour représentation Python :

(((None, (10, 30), None), (15, 20), (None, (17, 14), None)),
(29, 21), ((None, (30, 63), None), (35, 13), None))

Il est représenté sur la Figure 2 ci-après.

25-NSIJ1AS1 Page : 6 / 21

Figure 2. Arbre associé à la liste etoiles

9. Dessiner l’arbre binaire de recherche obtenu à partir de la liste :

 [(1, 33), (2, 30), (2, 33), (4, 30), (8, 39)]

10. Recopier et compléter les lignes 3, 7, 8, 9 et 11 du code de la fonction
construction qui prend en paramètres une liste etoiles supposée triée par
ordre croissant, ainsi que deux entiers debut et fin. Cette fonction renverra
l’arbre binaire de recherche associé aux coordonnées présentes entre les
indices debut (inclus) et fin (exclu) de la liste etoiles.

 Par exemple, l’appel initial permettant de construire l’arbre associé à la liste
etoiles est construction(etoiles, 0, 6).

 L’indice du milieu est 3, le sous-arbre gauche est renvoyé par l’appel
construction(etoiles, 0, 3) et le sous-arbre droit par
construction(etoiles, 4, 6).

 1 def construction(etoiles, debut, fin):
 2 if debut == fin:
 3 return ...
 4
 5 milieu = (debut + fin) // 2
 6
 7 sag = construction(...)
 8 racine = ...
 9 sad = ...
10
11 return ...

11. Écrire le code de la fonction en_arbre qui prend en paramètre une liste
etoiles de couples de coordonnées non triés et renvoie l’arbre construit selon
la démarche décrite plus haut. On pourra utiliser la fonction construction de
la question précédente.

On souhaite désormais écrire une fonction contient qui prend en paramètres un
arbre binaire de recherche arbre tel que renvoyé par la fonction construction ainsi

25-NSIJ1AS1 Page : 7 / 21

qu’un tuple d’entiers position représentant les coordonnées d’une étoile. Cette
fonction renvoie True si l’arbre contient cette étoile, False dans le cas contraire.

12. Recopier et compléter les lignes 3, 8, 9, 10 et 12 du code de la fonction
contient.

 1 def contient(arbre, position):
 2 if arbre is None:
 3 return ...
 4
 5 sag, valeur, sad = arbre
 6
 7 if position < valeur:
 8 return contient(..., ...)
 9 elif ...:
10 return ...
11 else:
12 return ...

