
25-NSIJ1AS1 Page : 8 / 21

Exercice 2 (6 points)

Cet exercice porte sur les systèmes d’exploitation, les processus, les structures de
données linéaires, la programmation en Python et en particulier la programmation
orientée objet.

Partie A

“Le système d’exploitation est chargé d’allouer les ressources (mémoires, temps
processeur, entrées/sorties) nécessaires aux processus et d’assurer que le
fonctionnement d’un processus n’interfère pas avec celui des autres.”

Source : Wikipédia, extrait de l’article consacré aux processus.

1. Expliquer succinctement, dans ce contexte, ce qu’est un processus.

On rappelle qu’un processus peut-être soit élu, soit bloqué, soit prêt.

2. Recopier et compléter le schéma ci-dessous avec les termes suivants :

 élu, bloqué, prêt, élection, blocage, déblocage.

 Figure 1. Schéma processus

On considère qu’un monoprocesseur est utilisé. Le système d’exploitation tel un chef
d’orchestre, gère l’accès au processeur selon la règle du « premier arrivé, premier servi
». À chaque processus, on associe un instant d’arrivée (instant où le processus
demande l’accès au processeur pour la première fois) et une durée d’exécution (durée
d’accès au processeur nécessaire pour que le processus s’exécute entièrement).

3. Donner la structure de données la plus adaptée pour gérer l’accès des
processus au processeur selon la règle du « premier arrivé, premier servi ».

25-NSIJ1AS1 Page : 9 / 21

Le tableau ci-dessous présente les instants d’arrivées et les durées d’exécution de
quatre processus :

4 processus

Processus instant d’arrivée durée d’exécution

P1 0 4

P2 2 2

P3 3 4

P4 4 2

4. Recopier et compléter, à l’aide du tableau, le schéma ci-dessous avec les
processus P1 à P4 en utilisant la règle du « premier arrivé premier servi ».

 Figure 2. Utilisation du processeur

5. Déterminer le temps qu’a dû attendre le processus P4 avant de pouvoir accéder
au processeur.

Partie B

6. Expliquer en quoi consiste la notion d’interblocage.

Afin d’éviter une situation d’interblocage, une solution consiste à attribuer à chaque
processus un numéro de priorité.

On souhaite modéliser ce mode de fonctionnement mettant en jeu des numéros de
priorité :

- en utilisant une liste de tuples, tuple constitué d’un entier représentant le
numéro de priorité ainsi que d’une chaîne de caractères représentant le nom du
processus ;

- le processus prioritaire est celui dont le numéro de priorité est le plus petit.

Il est donc important que la liste soit et reste triée dans l’ordre décroissant des numéros
de priorités.

Exemple :

>>> exemple = [(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1,
'Vivaldi')]
>>> # La liste est triée, le processus le plus prioritaire est
'Vivaldi'

25-NSIJ1AS1 Page : 10 / 21

On considère la classe Priority_Queue dont l’attribut liste_priorite est une
liste de tuples, constitués d’un numéro de priorité et d’un nom de processus comme
dans l’exemple ci-avant.

 1 class Priority_Queue:
 2 def __init__(self):
 3 self.liste_priorite = []
 4
 5 def est_vide(self):
 6 """Renvoie Vrai si la liste_priorite
 7 est vide, Faux sinon
 8 """
 9 return self.liste_priorite == []
10
11 def sortir(self):
12 """Retire et renvoie le dernier élément de
13 liste_priorite"""
14 assert ...
15 ...
16
17 def index_insertion_element(self, element):
18 """Renvoie la position/index d'insertion
19 d'element dans liste_priorite triée
20 par ordre décroissant
21 de numéro priorité
22 """
23 if self.est_vide():
24 ...
25 else:
26 debut = 0
27 fin = len(self.liste_priorite) - 1
28 milieu = (debut + fin) // 2
29 while ... <= fin:
30 if self.liste_priorite[milieu][0] > ...:
31 debut = ...
32 elif self.liste_priorite[milieu][0] < ...:
33 fin = ...
34 else:
35 # cas d'égalité de priorité
36 ... milieu
37 milieu = ...
38 return milieu + 1
39
40 def inserer(self, element):
41 """Modifie liste_priorite en insérant
42 element à la position adéquate
43 dans l'ordre décroissant de
44 numéro de priorité"""

7. Écrire l’instruction permettant d’instancier navigateurs un objet de la classe
Priority_Queue.

25-NSIJ1AS1 Page : 11 / 21

On rappelle que la méthode pop(), appelée sans argument, supprime et renvoie le
dernier élément d’une liste.

>>> fruits = ['pomme', 'pomme', 'raisin', 'orange', 'poire']
>>> fruits.pop()
'poire'
>>> fruits
['pomme', 'pomme', 'raisin', 'orange']

8. Recopier et compléter les lignes 14 et 15 du code de la méthode sortir qui
après avoir vérifié, sous la forme d’une précondition, que l’objet n’est pas vide,
retire et renvoie le dernier élément de liste_priorite.

Pour maintenir la liste de priorités triée dans l’ordre décroissant des numéros de
priorités, il est indispensable de savoir à quelle position on doit insérer un nouvel
élément en fonction de sa priorité.

Cette question ne porte que sur la détermination de la position à laquelle devrait être
inséré un élément et cela sans effectuer d’insertion.

On considère, par exemple, que navigateurs.liste_priorite contient

[(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1, 'Vivaldi')].

Si on souhaite insérer :

- l’élément (12, 'Opera') on devrait l’insérer au tout début, à la position 0 de
navigateurs.liste_priorite ;

- l’élément (6, 'Brave') on devrait l’insérer à la position 2 juste avant (5,
'Chrome') ;

- l’élément (0, 'Safari') on devrait l’insérer à la position 4 c’est-à-dire
l’ajouter à la fin de la liste.

Pour déterminer la position d’insertion d’un nouvel élément on adapte la méthode dite
de recherche dichotomique dans une liste triée dans l’ordre décroissant des numéros
de priorités (voir la méthode index_insertion_element).

On compare la priorité du tuple element à la priorité du tuple se situant au milieu de
la liste_priorite.

- si elle est strictement supérieure on recommence dans la moitié gauche de
liste_priorite ;

- si elle est strictement inférieure on recommence dans la moitié droite de
liste_priorite ;

- si elle est égale la position devra être le milieu.

9. Donner le coût en temps de la recherche dichotomique.

25-NSIJ1AS1 Page : 12 / 21

10. Recopier et compléter les huit lignes 24, 29, 30, 31, 32, 33, 36, et 37 du code
de la méthode index_insertion_element qui prend en paramètre un
élément element et qui renvoie la position d’insertion de l’élément
element en utilisant une méthode dichotomique.

11. Écrire, sans utiliser la méthode insert des listes Python, une méthode
inserer qui prend en paramètre un élément element, et modifie
liste_priorite en insérant l’élément element à la position adéquate de
la liste triée par ordre décroissant des numéros de priorités.

 Exemples :

 >>> navigateurs.liste_priorite
[(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1,
'Vivaldi')]
>>> navigateurs.inserer((16, 'Brave'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'), (5,
'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((6, 'Safari'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'),(6,
'Safari'), (5, 'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((0, 'Lynx'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'),(6,
'Safari'), (5, 'Chrome'), (1, 'Vivaldi'), (0, 'Lynx')]

