Exercice 2 (6 points)

Cet exercice porte sur l'algorithmique, les listes et la programmation dynamique.

Dans un jeu de stratégie, la carte est un carré de n X n cases, ou n est un entier
strictement positif. Certaines cases sont dites constructibles, d’autres ne le sont pas.
Toutes les cartes contiennent au moins une case constructible.

Une telle carte est représentée en Python par une liste de listes. Les cases
constructibles sont représentées par des cellules contenant la valeur 1, celles qui sont
non constructibles par des cellules contenant la valeur 0. On fournit ci-dessous la
représentation d’une carte pour laguelle n est égal a 5 :

carte A = [
(o, o, 1, 1, 11,
(1, 1, o, 1, 11,
(o, 1, 1, 1, 01,
(6, 1, 1, 1, 01,
(o6, 1, 1, 1, 0]

~
~
~
~

]

Une base dans la carte est un carré formé de cases constructibles. On cherche a
construire la plus grande base possible, ce qui revient donc a trouver un plus grand
carré, inclus dans la carte, ne contenant que des valeurs 1. Il peut en exister plusieurs.

Dans la carte précédente, la plus grande base possible est un carré de 3 cases de
cOté, son coin supérieur gauche est la cellule carte A[2][1], de coordonnées
(2,1).0n dit que cette base est issue de la cellule carte A[2][1] et que sa taille
vaut 3.

Partie A
On considére la carte B donnée ci-dessous.

carte B
(1,

(

~
~
~

[0,
[0,
[1

14

~
~
~

o =
~
e
~
e

~

[ ST T R '
~

~
~

1. Donner la taille de la plus grande base carrée ainsi que les coordonnées de la
cellule dont elle est issue.

Afin de répondre a ce probléme, on envisage une recherche exhaustive de solution.
Cela signifie que I'on teste tous les carrés inclus dans la carte initiale afin de vérifier
s’ils ne contiennent que des cases constructibles. On considére dans un premier temps
le carré de taille n, puis les quatre carrés de taille n - 1 et ainsi de suite jusqu’aux

25-NSIJ1IMES Page:8/19



carrés de taille 1. Dés que I'on trouve un carré constructible, on renvoie sa taille et les
coordonnées de son coin supérieur gauche.

2. On considere un entier taille strictement positif. Déterminer la somme des
valeurs de toutes les cellules d’un carré constructible de taille cases de coté.

La fonction est constructible prend en parametres :

* laliste de listes carte représentant la carte ;

* lesentiersi coinetj coin indiquant les coordonnées de la cellule dont est
issu le carré considéré (i coin est l'indice de la ligne et j coin celui de la
colonne) ;

« lentier positif taille indiquant la taille de ce carré.

Cette fonction renvoie True si le carré décrit par les parametres est constructible,
False dans le cas contraire.

Cette fonction n’a pas besoin de vérifier que les coordonnées et la taille passées en
parametres définissent toujours un carré valide dont toutes les cases sont incluses
dans la carte. On suppose que c’est toujours le cas.

3. Compléter le code de la fonction est constructible.

1 def est constructible(carte, 1 coin, J coin, taille):
2 s =0

3 for 1 in range(i coin, 1 coin + taille):

4 for j in range(..., ...):

5 s = ...

6 # Plusieurs lignes possibles

La fonction plus _grande base exhaustive prend en parametre la liste de listes
carte représentant une carte et renvoie un triplet (taille, i, J) dans lequel
taille est la taille d’'un carré constructible de taille maximale et i et j sont les
coordonnées de son coin supérieur gauche.

Cette fonction utilise la méthode exhaustive décrite plus haut.

On rappelle qu’une carte contient toujours au moins une case constructible et que cette
fonction renverra donc toujours un résultat.

4. Compléter le code de la fonction plus grande base exhaustive.

1 def plus grande base exhaustive (carte):

2 n = len(carte)

3 # les tailles vont de n a 1, de -1 en -1
4 for taille in range(n, 0, -1):

5 i=0

6 while i + taille <= n:

7 J =

25-NSIJ1IMES Page:9/19



8 while

9 if est constructible(...):
10 return (taille, i, 7J)
11 = ...

12 i=1+4+1

Un décompte du nombre de carrés a étudier dans le pire des cas en fonction de la
taille de la carte initiale permet de construire la figure 1 ci-dessous.

[ []
[
m . .
S 8 millions -
=}
]
;GJ .
T
& 6 millions -
=
] L
(W]
Q
T 4 millions ®
v
o
e 0
D . .
=Z 2 millions °
]
] ¢
0 million - & © | . | .
0 50 100 150 200 250 300

Largeur de la carte

Figure 1. Nombre de carrés a étudier en fonction de la largeur de la carte

5. Expliquer pourquoi cette approche exhaustive est inapplicable dans le cas de
grandes cartes.

Partie B

On souhaite désormais résoudre ce probleme en utilisant la programmation
dynamique. Pour cela, on construit une liste de listes auxiliaire aux de mémes
dimensions que la carte et telle que aux[i] [J] contienne la taille de la plus grande
base (carrée) issue de carte[i] [J].

En reprenant 'exemple de carte A, on obtient la liste de listes aux A :

carte A = [
(o, o0, 1, 1, 117,
(1, 1, 0, 1, 117,
(0, 1, 1, 1, 01,
(o, 1, 1, 1, 0],
(0, 1, 1, 1, O]

~
~
~
~

25-NSIJ1IMES Page:10/19



aux

~
~
~

~
~
~

~
~
~

cooro

N WRE O —
<

RN O
<

e N
~

OO0 OoORr K

~

[ T S TR (S R '
~

~
~

aux A[2][1] contient la valeur 3 car la plus grande base issue de la cellule
carte A[2][1] aune taille de 3.

Une fois la liste de listes auxiliaire aux remplie, on détermine la taille et les
coordonnées de la plus grande base (carrée) de la carte en cherchant la valeur
maximale dans aux.

6. Déterminer la liste auxiliaire aux B associée a la carte représentée par

carte B.

carte B = [
(1, 1, 1, 11,
(0, 1, 1, 11,
(0, 1, 1, 11,
[1, 0, 1, 1]

14

~
~
~

]

On considere une carte carte C de taille 6 ainsi que la liste auxiliaire aux C
associée. Seules certaines valeurs sont données ci-dessous.

carte C = |
[' 4 4 4 OI ’ "]I
[ 1/ 4 4 4 4 "]I
[" 4 4 14 4 14 "]I
[" 4 4 4 ll ’ "]I
|: ll 14 14 14 14 "]I
[" 4 14 14 4 14 "]I

]

aux C = [
[ A 4 14 14 al 2/ ]I
|: bl OI 4 ll ll ]I
[ 3/ 2/ ’ LN L4 ]l
|: M 4 4 4 CI 2! ]I
|: dl 2/ 4 2! 2! ]I
[ 1/ 1/ 14 14 4 ]I

7. Déterminer les valeurs des coefficients a, b, c et d.

Pour une liste de listes carte donnée, lorsqu'on construit la liste auxiliaire aux
associee, on commence par remplir les cellules de la derniére ligne et de la derniére
colonne de aux en recopiant celles de carte.

25-NSIJ1IMES Page:11/19



On admet de facon générale que, pour toutes les autres cellules, si carte[i] [7]
vaut 0 alors aux[i] [j] prend aussi la valeur 0, et, si carte[i1][j] = 1, alors
aux[1] [J] se calcule a I'aide de I'expression suivante :

1 + min(aux[i + 11[]J], aux[i][J + 11, aux[i + 1]1[] + 11])

8. Recopier et compléter les lignes 8, 9, 14 et 15 de la fonction calcule aux qui
prend en parametre une liste de liste carte et renvoie la liste auxiliaire

associée.
1 def calcule aux(carte):
2 n = len(carte)
3 aux = [[0 for j in range(n)] for i in range(n)]
4
5 # Remplissage de la derniére ligne
6 # et de la derniére colonne
7 for k in range(n):
8 aux[n - 1][k] =
9 aux[...][...]
10
11 # On complete les lignes de bas en haut
12 for i in range(n - 2, -1, -1):
13 # On complete les colonnes de droite a gauche
14 for j in range(...):
15 if
16 aux[1][j] = 1 + min(aux[i + 1]1[3]1,
17 aux[i][3 + 11,
18 aux[i + 11([37 + 1])
19 return aux

La fonction plus_grande base prend en parametre une liste de listes carte et
renvoie la taille et les coordonnées du coin supérieur gauche d’'une base de taille
maximale. Cette fonction utilise la liste auxiliaire aux renvoyée par I'appel
calcule aux(carte).

9. Compléter la fonction plus _grande base a partir de la ligne 7. Il est
possible d’écrire plusieurs lignes.

1 def plus grande base(carte):

2 n = len(carte)

3 aux = calcule aux(carte)
4 taille max = aux[0] [0]

5 i max = 0

6 J max = 0

.

carte 1000 est la liste représentant une carte de 1000 x 1000 cases et
carte 3000 celle représentant une carte de 3000 x 3 000 cases.

L'appel plus grande base (carte 1000) s’exécute en 0,4 seconde.

25-NSIJ1IMES Page:12/19



10. Parmi les durées suivantes, indiquer celle qui permet d’estimer le temps
d’exécution de I'appel plus grande base (carte 3000) :

— 0,4 seconde ;
— 1,2 seconde ;
— 3,6 secondes.

Justifier.

25-NSIJ1IMES Page : 13/19



