
25-NSIJ1ME3 Page : 8 / 19

Exercice 2 (6 points)

Cet exercice porte sur l’algorithmique, les listes et la programmation dynamique.

Dans un jeu de stratégie, la carte est un carré de 𝑛 × 𝑛 cases, où 𝑛 est un entier

strictement positif. Certaines cases sont dites constructibles, d’autres ne le sont pas.

Toutes les cartes contiennent au moins une case constructible.

Une telle carte est représentée en Python par une liste de listes. Les cases

constructibles sont représentées par des cellules contenant la valeur 1, celles qui sont

non constructibles par des cellules contenant la valeur 0. On fournit ci-dessous la

représentation d’une carte pour laquelle 𝑛 est égal à 5 :

carte_A = [

 [0, 0, 1, 1, 1],

 [1, 1, 0, 1, 1],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

]

Une base dans la carte est un carré formé de cases constructibles. On cherche à

construire la plus grande base possible, ce qui revient donc à trouver un plus grand

carré, inclus dans la carte, ne contenant que des valeurs 1. Il peut en exister plusieurs.

Dans la carte précédente, la plus grande base possible est un carré de 3 cases de

côté, son coin supérieur gauche est la cellule carte_A[2][1], de coordonnées

(2,1). On dit que cette base est issue de la cellule carte_A[2][1] et que sa taille

vaut 3.

Partie A

On considère la carte_B donnée ci-dessous.

carte_B = [

 [1, 1, 1, 1],

 [0, 1, 1, 1],

 [0, 1, 1, 1],

 [1, 0, 1, 1],

]

1. Donner la taille de la plus grande base carrée ainsi que les coordonnées de la
cellule dont elle est issue.

Afin de répondre à ce problème, on envisage une recherche exhaustive de solution.

Cela signifie que l’on teste tous les carrés inclus dans la carte initiale afin de vérifier

s’ils ne contiennent que des cases constructibles. On considère dans un premier temps

le carré de taille n, puis les quatre carrés de taille n - 1 et ainsi de suite jusqu’aux

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 9 / 19

carrés de taille 1. Dès que l’on trouve un carré constructible, on renvoie sa taille et les

coordonnées de son coin supérieur gauche.

2. On considère un entier taille strictement positif. Déterminer la somme des

valeurs de toutes les cellules d’un carré constructible de taille cases de côté.

La fonction est_constructible prend en paramètres :

• la liste de listes carte représentant la carte ;

• les entiers i_coin et j_coin indiquant les coordonnées de la cellule dont est

issu le carré considéré (i_coin est l’indice de la ligne et j_coin celui de la

colonne) ;

• l’entier positif taille indiquant la taille de ce carré.

Cette fonction renvoie True si le carré décrit par les paramètres est constructible,

False dans le cas contraire.

Cette fonction n’a pas besoin de vérifier que les coordonnées et la taille passées en

paramètres définissent toujours un carré valide dont toutes les cases sont incluses

dans la carte. On suppose que c’est toujours le cas.

3. Compléter le code de la fonction est_constructible.

 1 def est_constructible(carte, i_coin, j_coin, taille):

2 s = 0

3 for i in range(i_coin, i_coin + taille):

4 for j in range(..., ...):

5 s = ...

6 ... # Plusieurs lignes possibles

La fonction plus_grande_base_exhaustive prend en paramètre la liste de listes

carte représentant une carte et renvoie un triplet (taille, i, j) dans lequel

taille est la taille d’un carré constructible de taille maximale et i et j sont les

coordonnées de son coin supérieur gauche.

Cette fonction utilise la méthode exhaustive décrite plus haut.

On rappelle qu’une carte contient toujours au moins une case constructible et que cette

fonction renverra donc toujours un résultat.

4. Compléter le code de la fonction plus_grande_base_exhaustive.

 1 def plus_grande_base_exhaustive(carte):

 2 n = len(carte)

 3 # les tailles vont de n à 1, de -1 en -1

 4 for taille in range(n, 0, -1):

 5 i = 0

 6 while i + taille <= n:

 7 j = ...

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 10 / 19

 8 while ...:

 9 if est_constructible(...):

10 return (taille, i, j)

11 j = ...

12 i = i + 1

Un décompte du nombre de carrés à étudier dans le pire des cas en fonction de la

taille de la carte initiale permet de construire la figure 1 ci-dessous.

Figure 1. Nombre de carrés à étudier en fonction de la largeur de la carte

5. Expliquer pourquoi cette approche exhaustive est inapplicable dans le cas de
grandes cartes.

Partie B

On souhaite désormais résoudre ce problème en utilisant la programmation

dynamique. Pour cela, on construit une liste de listes auxiliaire aux de mêmes

dimensions que la carte et telle que aux[i][j] contienne la taille de la plus grande

base (carrée) issue de carte[i][j].

En reprenant l’exemple de carte_A, on obtient la liste de listes aux_A :

carte_A = [

 [0, 0, 1, 1, 1],

 [1, 1, 0, 1, 1],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

]

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 11 / 19

aux_A = [

 [0, 0, 1, 2, 1],

 [1, 1, 0, 1, 1],

 [0, 3, 2, 1, 0],

 [0, 2, 2, 1, 0],

 [0, 1, 1, 1, 0],

]

aux_A[2][1] contient la valeur 3 car la plus grande base issue de la cellule

carte_A[2][1] a une taille de 3.

Une fois la liste de listes auxiliaire aux remplie, on détermine la taille et les

coordonnées de la plus grande base (carrée) de la carte en cherchant la valeur

maximale dans aux.

6. Déterminer la liste auxiliaire aux_B associée à la carte représentée par

carte_B.

 carte_B = [

 [1, 1, 1, 1],

 [0, 1, 1, 1],

 [0, 1, 1, 1],

 [1, 0, 1, 1],

]

On considère une carte carte_C de taille 6 ainsi que la liste auxiliaire aux_C

associée. Seules certaines valeurs sont données ci-dessous.

carte_C = [

 [..., ..., ..., 0, ..., ...],

 [1, ..., ..., ..., ..., ...],

 [..., ..., ..., ..., ..., ...],

 [..., ..., ..., 1, ..., ...],

 [1, ..., ..., ..., ..., ...],

 [..., ..., ..., ..., ..., ...],

]

aux_C = [

 [..., ..., ..., a, 2, ...],

 [b, 0, ..., 1, 1, ...],

 [3, 2, ..., ..., ..., ...],

 [..., ..., ..., c, 2, ...],

 [d, 2, ..., 2, 2, ...],

 [1, 1, ..., ..., ..., ...],

]

7. Déterminer les valeurs des coefficients a, b, c et d.

Pour une liste de listes carte donnée, lorsqu’on construit la liste auxiliaire aux

associée, on commence par remplir les cellules de la dernière ligne et de la dernière

colonne de aux en recopiant celles de carte.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 12 / 19

On admet de façon générale que, pour toutes les autres cellules, si carte[i][j]

vaut 0 alors aux[i][j] prend aussi la valeur 0, et, si carte[i][j] = 1, alors

aux[i][j] se calcule à l’aide de l’expression suivante :

1 + min(aux[i + 1][j], aux[i][j + 1], aux[i + 1][j + 1])

8. Recopier et compléter les lignes 8, 9, 14 et 15 de la fonction calcule_aux qui

prend en paramètre une liste de liste carte et renvoie la liste auxiliaire

associée.

 1 def calcule_aux(carte):

 2 n = len(carte)

 3 aux = [[0 for j in range(n)] for i in range(n)]

 4

 5 # Remplissage de la dernière ligne

 6 # et de la dernière colonne

 7 for k in range(n):

 8 aux[n - 1][k] = ...

 9 aux[...][...] = ...

10

11 # On complète les lignes de bas en haut

12 for i in range(n - 2, -1, -1):

13 # On complète les colonnes de droite à gauche

14 for j in range(...):

15 if ...:

16 aux[i][j] = 1 + min(aux[i + 1][j],

17 aux[i][j + 1],

18 aux[i + 1][j + 1])

19 return aux

La fonction plus_grande_base prend en paramètre une liste de listes carte et

renvoie la taille et les coordonnées du coin supérieur gauche d’une base de taille

maximale. Cette fonction utilise la liste auxiliaire aux renvoyée par l’appel

calcule_aux(carte).

9. Compléter la fonction plus_grande_base à partir de la ligne 7. Il est

possible d’écrire plusieurs lignes.

 1 def plus_grande_base(carte):

2 n = len(carte)

3 aux = calcule_aux(carte)

4 taille_max = aux[0][0]

5 i_max = 0

6 j_max = 0

7 ...

carte_1000 est la liste représentant une carte de 1 000 × 1 000 cases et

carte_3000 celle représentant une carte de 3 000 × 3 000 cases.

L’appel plus_grande_base(carte_1000) s’exécute en 0,4 seconde.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 13 / 19

10. Parmi les durées suivantes, indiquer celle qui permet d’estimer le temps

d’exécution de l’appel plus_grande_base(carte_3000) :

– 0,4 seconde ;

– 1,2 seconde ;

– 3,6 secondes.

 Justifier.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

