
25-NSIJ1ME3 Page : 14 / 19

Exercice 3 (8 points)

Cet exercice porte sur le langage SQL, sur la programmation en Python et la recherche

textuelle.

Le sujet d’une étude porte sur les papillons, la corrélation entre leur présence et celle

de certaines plantes ainsi que sur la classification de nouvelles espèces.

Partie A. Corrélation avec la présence des plantes

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE

(avec les opérateurs logiques AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,

INSERT.

Dans le cadre de cette étude, une base de données faune_flore.db a été créée

pour étudier la corrélation entre la présence d’espèces de papillons et celle de

certaines plantes. Cette base de données regroupe les tables papillon, plante et

zone_geographique.

La table papillon comporte les informations suivantes :

• l’identification du papillon (num) ;

• le nom commun du papillon (nomCo) ;

• le nom scientifique du papillon (nomSc) ;

• la taille moyenne du papillon en millimètres (taille) ;

• le principal habitat du papillon (habitat) ;

• la zone géographique où le papillon est le plus présent (zone). Cet attribut fait

référence à l’attribut num de la table zone_geographique.

Un extrait de cette table est donné ci-après.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 15 / 19

papillon

num nomCo nomSc taille habitat zone

458 Monarque Danaus plexippu 100 Prairies 3

459 Citron de

Provence

Gonepteryx

cleopatra

30 Prairies 1

460 Paon-du-jour Aglais io 6 Jardins 6

461 Machaon Papilio machaon 85 Forêts 2

462 Petite Tortue Aglais urticae 30 Prairies 5

463 Robert-le-Diable Polygonia c-album 25 Forêts 4

La table plante comporte les informations suivantes :

• l’identification de la plante (num) ;

• le nom commun de la plante (nomCo) ;

• le nom scientifique de la plante (nomSc) ;

• le principal habitat de la plante (habitat) ;

• la zone géographique où elle est la plus présente (zone). Cet attribut fait

référence à l’attribut num de la table zone_geographique.

Un extrait de la table plante est donné ci-dessous.

plante

num nomCo nomSc habitat zone

128 Orchidée Phalaenopsis Phalaenopsis Forêts 5

129 Bambou Bambusoideae Forêts 3

130 Rose Rosa Haies 2

131 Lilas Syringa Haies 6

132 Coquelicot Papaver rhoeas Jardins 4

133 Lavande Lavandula Collines 1

La table zone_geographique contient les informations suivantes :

• l’identification de la zone géographique (num) ;

• le nom de la zone (zone).

Un extrait de la table zone_geographique est donné ci-après.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 16 / 19

zone_geographique

num zone

1 Afrique du Nord

2 Amérique du Nord

3 Amérique du Sud

4 Asie

5 Asie du Sud

6 Europe

1. Donner la définition d’une clé primaire.

2. Expliquer pourquoi l’attribut habitat de la table papillon ne peut pas être

une clé primaire.

3. Donner le résultat obtenu suite à l’exécution de la requête suivante si on
l’applique sur l’extrait de table donné :

 SELECT taille

FROM papillon

WHERE nomCo='Machaon'

Après avoir mesuré l’envergure de plusieurs papillons Petite Tortue, un des

scientifiques de l’étude a calculé la nouvelle moyenne des tailles pour ce papillon, qui

est maintenant de 50 mm.

4. Écrire une requête qui met à jour la table papillon, suite au calcul de cette

nouvelle moyenne.

5. Écrire une requête qui affiche le nom commun de tous les papillons présents
dans les prairies et dont la taille est strictement inférieure à 55 mm.

6. Écrire le résultat obtenu suite à l’exécution de la requête suivante si on
l’applique sur les extraits des tables donnés.

 SELECT nomSc

FROM plante

JOIN zone_geographique

ON plante.zone = zone_geographique.num

WHERE zone_geographique.zone = 'Asie'

7. Écrire une requête qui affiche le nom commun des papillons et celui des plantes
qui se trouvent dans le même habitat et dont la taille des papillons est
strictement inférieure à 55 mm.

8. Écrire le résultat obtenu suite à l’exécution de la requête suivante si on
l’applique sur les extraits des tables donnés.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 17 / 19

 SELECT papillon.nomCo, plante.nomCo

FROM papillon

JOIN zone_geographique

ON papillon.zone = zone_geographique.num

JOIN plante

ON plante.zone = zone_geographique.num

WHERE zone_geographique.zone = 'Europe'

9. Écrire une requête qui affiche le nom commun des papillons qui se trouvent
dans la même zone géographique que les coquelicots.

Partie B. Classification d’une nouvelle espèce

Les espèces de papillons sont regroupées dans une liste de dictionnaires. Pour

simplifier, seuls les attributs num (l’identifiant du papillon), nomCo (son nom commun),

nomSc (son nom scientifique) et taille (sa taille) seront considérés dans cette partie.

Une partie de la liste papillon est donnée ci-dessous :

papillon = [

 {'num': 458, 'nomCo': 'Monarque',

 'nomSc': 'Danaus plexippu', 'taille': 100},

 {'num': 459, 'nomCo': 'Citron de Provence',

 'nomSc': 'Gonepteryx cleopatra', 'taille': 30},

 {'num': 460, 'nomCo': 'Paon-du-jour',

 'nomSc': 'Aglais io', 'taille': 6},

 {'num': 461, 'nomCo': 'Machaon',

 'nomSc': 'Papilio machaon', 'taille': 85},

 {'num': 462, 'nomCo': 'Petite Tortue',

 'nomSc': 'Aglais urticae', 'taille': 50},

 {'num': 463, 'nomCo': 'Robert-le-Diable',

 'nomSc': 'Polygonia c-album', 'taille': 25}

]

Le but de cette partie est de trier la liste des papillons par ordre croissant de taille et

de classifier une nouvelle espèce photographiée.

La fonction tri_collec renvoie la liste de dictionnaires des papillons triée par ordre

croissant de taille.

 1 def tri_collec(collec):

 2 """Renvoie la collection des papillons triées

 3 par ordre croissant de leur taille.

 4 Paramètre:

 5 collec : liste de dictionnaires des papillons

 6 Renvoie:

 7 liste triée par ordre croissant des tailles

 8 des papillons.

 9 """

10 for i in range(1, len(collec)):

11 pap = collec[i]

12 j = ...

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 18 / 19

13 while j > 0 and collec[j - 1]['taille'] > ...:

14 collec[j] = collec[j - 1]

15 j = ...

16 collec[j] = pap

17 return ...

10. Recopier et compléter les lignes 12, 13, 15 et 17 de la fonction tri_collec.

11. Nommer le tri utilisé.

12. Indiquer, en justifiant, parmi les propositions suivantes quel est le coût en temps
de ce tri, dans le pire cas, pour un tableau de taille n : linéaire, quadratique,
logarithmique ou exponentiel.

L’algorithme des k plus proches voisins est utilisé pour classifier la nouvelle espèce

photographiée.

13. Expliquer brièvement le principe de cet algorithme.

Cette nouvelle espèce montre beaucoup de ressemblance avec l’espèce ‘Aglais io’

mais diffère par la taille et la couleur des motifs des ailes.

Pour vérifier l’hypothèse que la nouvelle espèce est l’espèce ‘Aglais io’ comportant une

mutation génétique, une recherche naïve d’une séquence caractéristique des papillons

‘Aglais io’ est réalisée sur la chaîne d’ADN extraite de la nouvelle espèce. Une chaîne

d’ADN est représentée en Python par une chaine de caractères. Cette recherche utilise

la fonction recherche_seq(seq, chaine) qui renvoie l’indice du premier caractère

de seq si la séquence seq est présente dans la chaîne d’ADN chaine et -1 sinon.

14. Recopier et compléter les lignes 15 et 17 de la fonction recherche_seq.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 19 / 19

 1 def recherche_seq(seq, chaine):

 2 """Renvoie l'indice du premier caractère de

 3 chaine où commence `seq` si la séquence `seq`

 4 se trouve dans la chaine de caractères chaine,

 5 -1 sinon

 6 Paramètres:

 7 seq : séquence à rechercher

 8 chaine : chaine d'ADN

 9 Renvoie:

10 indice du premier caractère de seq dans

11 la chaine, -1 sinon.

12 """

13 for i in range(len(chaine)-len(seq) + 1):

14 j = 0

15 while j < len(seq) and ...:

16 j += 1

17 if ...:

18 return i

19 return -1

La fonction recherche_BMH(seq, chaine), donnée ci-dessous, implémente

l’algorithme de Boyer-Moore Horspool.

 1 def dico_lettres(seq):

 2 d = {}

 3 for i in range(len(seq)-1):

 4 d[seq[i]] = i

 5 return d

 6

 7 def recherche_BMH(seq, chaine):

 8 decalage = dico_lettres(seq)

 9 i = 0

10 n = len(seq)

11 while i <= len(chaine) - n:

12 j = n-1

13 while j >= 0 and chaine[i + j] == seq[j]:

14 j -= 1

15 if j == -1:

16 return i

17 else:

18 if chaine[i + n - 1] in decalage:

19 i += n - decalage[chaine[i + n-1]] - 1

20 else:

21 i += n

22 return -1

15. Expliquer le principe de cet algorithme et son avantage par rapport à la fonction

naïve recherche_seq.

