
25-NSIJ1NC1 Page : 2 / 15

Exercice 1 (6 points)

Cet exercice porte sur les graphes, les protocoles réseaux et la programmation
orientée objet.

Partie A

Le graphe suivant modélise un ensemble de routeurs ; les sommets sont les routeurs,
les arêtes les liaisons entre ceux-ci.

Figure 1. Schéma des routeurs et des liaisons

On désire parcourir ce graphe en largeur depuis le sommet A.

1. Dire lequel de ces parcours est un parcours en largeur en justifiant :

o ABCDEF ;
o ABCEDF ;
o ABCDFE.

Voici un résumé sommaire du fonctionnement du protocole RIP permettant à chaque
routeur d’un réseau de taille modérée d’établir sa table de routage :

Règle a (règle d’initialisation). Chaque routeur initialise sa table en y ajoutant ses
voisins directs. Ils sont accessibles en un saut, sans passer par aucun routeur
intermédiaire.

Règle b (règle de transmission/réception). À intervalles de temps réguliers chaque
routeur envoie sa table de routage à ses voisins.

Règle c (règle de mise à jour). Lorsqu’un routeur reçoit les informations d’un routeur
voisin, trois cas peuvent survenir :

• une route vers un nouveau routeur lui est présentée : il l’ajoute à sa table de
routage ;

• une route vers un routeur déjà connu lui est présentée, plus longue en nombre
de sauts que celle inscrite dans sa table : elle est ignorée ;

• une route vers un routeur déjà connu lui est présentée, mais strictement plus
courte en nombre de sauts que la précédente : l’ancienne est remplacée par
celle-ci.

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 3 / 15

La réception par chaque routeur des tables de tous ses voisins et la mise à jour de sa
table de routage en conséquence constitue une itération du protocole. Au bout d’un
petit nombre de ces itérations, plus aucune table de routage ne varie, on dit que le
processus est stabilisé.

Pour tout cet exercice, on n’envisagera pas les cas problématiques dans lesquels une
liaison est coupée ou un routeur tombe en panne.

On considère des routeurs A, B, C, D, E et F connectés comme indiqué sur le graphe
de la figure 1.

Voici la table de routage de A à l’initialisation du protocole RIP :

Table de routage de A

routeur nombre de sauts prochain routeur

B 1 –

C 1 –

E 1 –

2. Donner la table de routage de F à l’initialisation du protocole RIP.

3. Donner la table de routage de A après une première itération de RIP (deux
réponses sont possibles).

4. Donner le numéro de l’itération de RIP à partir duquel les tables des routeurs
du réseau ne varient plus.

On suppose dans la question suivante que les routeurs E et F sont reliés.

5. Donner la nouvelle table de routage de A après stabilisation de RIP (deux
réponses sont possibles).

Partie B

Pour simuler la situation précédente et les tables de routage, on modélise le
fonctionnement d’un routeur par la classe Routeur. Chaque instance r de la classe
Routeur possède quatre attributs.

• nom : une chaine de caractères qui identifie le routeur.

• voisins : une liste d’objets de type Routeur. Il s’agit de routeurs qui sont
directement connectés au routeur r.

• nb_sauts : un dictionnaire qui associe à chaque routeur accessible depuis r
le nombre de sauts nécessaires pour l’atteindre depuis r.

• prochain : un dictionnaire qui associe à chaque routeur r_accessible,
accessible depuis r, le premier routeur sur un chemin qui mène à

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 4 / 15

r_accessible, en n sauts, où n est la valeur associée à r_accessible dans
nb_sauts. S’il y a un unique saut de r à r_accessible, alors la valeur
associée au routeur r_accessible est None.

Initialement, tous les routeurs sont déconnectés : l’attribut voisins est initialisé avec
la liste vide, et les attributs nb_sauts et prochain avec le dictionnaire vide.

class Routeur:
 def __init__(self, nom):
 self.nom = nom
 self.voisins = []
 self.nb_sauts = {}
 self.prochain = {}

Dans le programme principal, on crée les routeurs de la manière suivante :

A = Routeur('A')
B = Routeur('B')
C = Routeur('C')
D = Routeur('D')
E = Routeur('E')
F = Routeur('F')

Ainsi que la liste des routeurs

liste_routeurs = [A, B, C, D, E, F]

Afin de pouvoir relier les routeurs entre eux, on souhaite écrire une méthode relie,
de la classe Routeur, dont on donne le code incomplet ci-dessous. Cette méthode
prend en argument le routeur self ainsi qu’un routeur autre et met à jour si
nécessaire les attributs voisins, nb_sauts et prochain des routeurs self et
autre afin d’indiquer la présence d’une connexion entre ces deux routeurs. Dans le
cas où les routeurs sont déjà connectés, cette méthode ne fait rien.

1 def relie(self, autre):
2 if autre not in self.voisins:
3 self.voisins.append(...)
4 self.nb_sauts[autre] = ...
5 self.prochain[autre] = ...
6 if self not in autre.voisins:
7 autre.relie(...)
8

6. Recopier et compléter le code de la méthode relie.

7. Écrire la méthode relie_liste de la classe Routeur qui prend en paramètre
une liste de routeurs lst et qui relie le routeur self à chacun des routeurs de
la liste lst.

Par exemple, pour relier le routeur A aux routeurs B, C et E, on exécute l’instruction :

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 5 / 15

A.relie_liste([B, C, E])
On n'appelle pas B.relie(A) car la liaison est déjà faite

8. Écrire les instructions manquantes pour relier les routeurs de manière à obtenir
le graphe de la figure 1.

D’après la règle c (règle de mise à jour) du protocole RIP, lorsqu’un routeur reçoit les
informations d’un routeur voisin, il doit mettre à jour sa table de routage. On donne ci-
dessous le code incomplet de la méthode met_a_jour_table qui implémente la
règle c du protocole RIP.

def met_a_jour_table(self, autre):
 for r in autre.nb_sauts:
 if r != self:
 if (r not in self.nb_sauts or
 self.nb_sauts[r] > ...):
 self.nb_sauts[r] = ...
 self.prochain[r] = ...

9. Recopier et compléter le code de la méthode met_a_jour_table ci-dessus.

10. Écrire la méthode itere_rip qui prend en paramètre le routeur self et met
à jour sa table de routage lorsqu’il reçoit la table de routage de chacun des
routeurs présents dans la liste de ses voisins.

11. Écrire une fonction qui prend en paramètre une liste de routeurs l_routeurs
et qui réalise une itération du protocole RIP pour tous les routeurs de
l_routeurs.

Au bout de quelques itérations, le protocole RIP converge : plus aucune table de
routage du réseau n’est modifiée. On aimerait pouvoir itérer le protocole dans le
programme principal jusqu’à ce que ce soit le cas, à l’aide d’une boucle while.

On suppose que la méthode met_a_jour_table de la classe Routeur a été
modifiée de telle sorte qu’elle renvoie True dans le cas où le routeur self a procédé
à une mise à jour de sa table de routage, et False sinon.

12. Écrire une version modifiée du code de la méthode itere_rip de la classe
Routeur de telle sorte que celle-ci renvoie True dans le cas où le routeur self
a procédé à une modification de sa table de routage au cours de l’exécution de
la méthode itere_rip, et False sinon.

On donne ci-dessous le code du programme principal. On suppose que les instructions
permettant de relier les routeurs ont été écrites à la suite et que la situation est celle
décrite dans le graphe de la figure 1.

A = Routeur('A')
B = Routeur('B')
C = Routeur('C')
D = Routeur('D')

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 6 / 15

E = Routeur('E')
F = Routeur('F')
liste_routeurs = [A, B, C, D, E, F]
instructions permettant de relier les routeurs

13. Compléter le code du programme principal afin que celui-ci mette à jour les
tables de routage des routeurs présents dans la liste liste_routeurs jusqu’à
ce qu’il ne soit plus nécessaire de faire des mises à jour des tables de routage.

 On ne demande pas de réécrire les instructions permettant de connecter les
routeurs entre eux.

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

