Exercice 2 (6 points)

Cet exercice porte sur les bases de données et la programmation orientée objet.
Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

e construire des requétes d'interrogation a I'aide de SELECT, FROM, WHERE (avec
les opérateurs logiques AND, OR), JOIN ... ON;

e construire des requétes d’insertion et de mise a jour a l'aide de UPDATE,
INSERT, DELETE ;

e affiner les recherches a I'aide de DISTINCT et ORDER BY.

Susie décide de créer une base de données qui recense des randonnées allant d’'un
parking a un lac.

Elle crée trois relations représentées sur le schéma ci-dessous (figure 1).

a2 parking FE rando T lac
i
T idP 5 J—_[T idR idlL
commune depart / nom
altitude arrivee altitude
coord_GPS

Figure 1. Schéma des trois relations

Les clés primaires sont signalées par une clé. Dans la relation rando :

e depart est une clé étrangere qui référence l'attribut 1dP de la relation
parking ;

e arrivee est une clé étrangére qui référence I'attribut idL de la relation lac.
L’altitude, exprimée en métre, est un entier.

Voici un extrait des enregistrements de ces trois relations.

parking
idP commune altitude coord_GPS
1 Chamonix 1026 (45.98;6.89)
2 Argentiere 1429 (45.99;6.92)
3 Passy 600 (45.92;6.72)
4 Passy 1181 (45.95;6.71)
5 Nevache 2022 (45.05;6.52)

25-NSIJINC1 Page:7/15

rando

1dR depart arrivee

1 1 1

2 2 1

3 1 2

4 3 3

lac
1dL nom altitude

1 Lac Blanc 2 354
2 Lacs Noirs 2 564
3 Lac Vert 1266
4 Lac Rouge 2 585

1. Indiquer ce que renvoie la requéte suivante lorsqu’on I'applique aux extraits
précédents.

SELECT nom
FROM lac
WHERE altitude <= 2000;

2. Indiguer les noms des lacs qu’on peut atteindre depuis le parking de Chamonix
d’apres la base de données de Susie.

A partir de maintenant, on travaille sur la totalité des enregistrements et non plus
seulement sur les extraits précédents.

3. Donner une requéte permettant d’obtenir les coordonnées GPS des parkings
situés dans la commune de Passy a une altitude comprise strictement entre 800
et 1 000 métres.

4. Donner une requéte permettant d’obtenir les noms des lacs qu'il est possible
d’atteindre depuis le parking situé a 1300 meétres d’altitude dans la commune
de Cordon (on admet qu’un tel parking existe dans la base de données).

Dans les questions suivantes, I'ordre des requétes SQL est important. On considére
une nouvelle randonnée qui part du parking dont l'identifiant est 3 & Passy et qui
conduit au lac d’Anterne situé a 2 059 metres d’altitude.

25-NSIJINC1 Page :8/15

Le parking est déja dans la base de données mais par contre, ni la randonnée, ni le
lac n’y figurent.

5. Donner les requétes permettant a Susie d’ajouter a sa base de données cette
randonnée et ce lac (on pourra utiliser I'identifiant 42 pour le lac et I'identifiant
100 pour la randonnée).

6. Susie a fait une erreur de saisie en insérant le nom du lac, elle a écrit ‘Lc d
Anterne’. Donner la requéte permettant de corriger cette erreur.

7. Le parking dont I'identifiant est 28 a été transformé en un parc et n’existe plus.

Donner les requétes permettant de supprimer ce parking de la base de
données.

Susie souhaite obtenir pour chacun des parkings le hombre de randonnées qui en
partent.

Elle n’a pas encore appris a le faire en SQL et décide de le faire en Python. Pour cela
elle définit la classe Rando ci-dessous permettant de représenter chacune des
randonnées. La table rando est alors donnée par une liste d’objets de la classe
Rando.

1 class Rando:

2 def __init__(self, 1dR, depart, arrivee):

3 self.1dR = idR # 1dentifiant de la rando
4 self.depart = depart # i1dentifiant du parking
5 self.arrivee = arrivee # identifiant du lac

8. Recopier et compléter les lignes 3 et 5 de la fonction get_parking qui prend
en parametre une liste de randonnées et qui renvoie la liste des identifiants des
différents parkings, points de départ de ces randonnées (cette liste ne devra
pas avoir de doublon).

1 def get parking(randos):

2 parkings = []

3 for ...:

4 iT rando.depart not iIn parkings:
5 -

6 return parkings

Par exemple, get_parking([Rando(1, 1, 1), Rando(2, 2, 1),
Rando(3, 1, 2)]) renvoie [1, 2].

9. Recopier et compléter la ligne 4 de la fonction get_nb_rando qui prend en
parametres un identifiant de parking et une liste de randonnées, et qui renvoie
le nombre de randonnées qui partent de ce parking.

1 def get _nb_rando(parking, randos):

2 nb =0
3 for rando in randos:
4 it .. .:

25-NSIJINC1 Page :9/15

5 nb = nb + 1
6 return nb

Par exemple, get_nb_rando(1, [Rando(l1, 1, 1), Rando(2, 2,
1), Rando(3, 1, 2)]) renvoie 2.

10. Ecrire une fonction nb_rando_par_parking qui prend en paramétre une liste
de randonnées et qui renvoie un dictionnaire qui associe a chaque identifiant
de parking le nombre de randonnées qui partent de ce parking.

Par exemple, nb_rando_par_parking([Rando(1, 1, 1), Rando(2,
2, 1), Rando(3, 1, 2)]) renvoie {1:2, 2:1}.

25-NSIJINC1 Page : 10/ 15

