
25-NSIJ1NC1 Page : 7 / 15

Exercice 2 (6 points)

Cet exercice porte sur les bases de données et la programmation orientée objet.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec
les opérateurs logiques AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,
INSERT, DELETE ;

• affiner les recherches à l’aide de DISTINCT et ORDER BY.

Susie décide de créer une base de données qui recense des randonnées allant d’un
parking à un lac.

Elle crée trois relations représentées sur le schéma ci-dessous (figure 1).

Figure 1. Schéma des trois relations

Les clés primaires sont signalées par une clé. Dans la relation rando :

• depart est une clé étrangère qui référence l’attribut idP de la relation
parking ;

• arrivee est une clé étrangère qui référence l’attribut idL de la relation lac.

L’altitude, exprimée en mètre, est un entier.

Voici un extrait des enregistrements de ces trois relations.

parking

idP commune altitude coord_GPS

1 Chamonix 1 026 (45.98;6.89)

2 Argentiere 1 429 (45.99;6.92)

3 Passy 600 (45.92;6.72)

4 Passy 1 181 (45.95;6.71)

5 Nevache 2 022 (45.05;6.52)

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 8 / 15

rando

idR depart arrivee

1 1 1

2 2 1

3 1 2

4 3 3

lac

idL nom altitude

1 Lac Blanc 2 354

2 Lacs Noirs 2 564

3 Lac Vert 1 266

4 Lac Rouge 2 585

1. Indiquer ce que renvoie la requête suivante lorsqu’on l’applique aux extraits
précédents.

 SELECT nom
FROM lac
WHERE altitude <= 2000;

2. Indiquer les noms des lacs qu’on peut atteindre depuis le parking de Chamonix
d’après la base de données de Susie.

À partir de maintenant, on travaille sur la totalité des enregistrements et non plus
seulement sur les extraits précédents.

3. Donner une requête permettant d’obtenir les coordonnées GPS des parkings
situés dans la commune de Passy à une altitude comprise strictement entre 800
et 1 000 mètres.

4. Donner une requête permettant d’obtenir les noms des lacs qu’il est possible
d’atteindre depuis le parking situé à 1300 mètres d’altitude dans la commune
de Cordon (on admet qu’un tel parking existe dans la base de données).

Dans les questions suivantes, l’ordre des requêtes SQL est important. On considère
une nouvelle randonnée qui part du parking dont l’identifiant est 3 à Passy et qui
conduit au lac d’Anterne situé à 2 059 mètres d’altitude.

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 9 / 15

Le parking est déjà dans la base de données mais par contre, ni la randonnée, ni le
lac n’y figurent.

5. Donner les requêtes permettant à Susie d’ajouter à sa base de données cette
randonnée et ce lac (on pourra utiliser l’identifiant 42 pour le lac et l’identifiant
100 pour la randonnée).

6. Susie a fait une erreur de saisie en insérant le nom du lac, elle a écrit ‘Lc d
Anterne’. Donner la requête permettant de corriger cette erreur.

7. Le parking dont l’identifiant est 28 a été transformé en un parc et n’existe plus.

 Donner les requêtes permettant de supprimer ce parking de la base de
données.

Susie souhaite obtenir pour chacun des parkings le nombre de randonnées qui en
partent.

Elle n’a pas encore appris à le faire en SQL et décide de le faire en Python. Pour cela
elle définit la classe Rando ci-dessous permettant de représenter chacune des
randonnées. La table rando est alors donnée par une liste d’objets de la classe
Rando.

1 class Rando:
2 def __init__(self, idR, depart, arrivee):
3 self.idR = idR # identifiant de la rando
4 self.depart = depart # identifiant du parking
5 self.arrivee = arrivee # identifiant du lac

8. Recopier et compléter les lignes 3 et 5 de la fonction get_parking qui prend
en paramètre une liste de randonnées et qui renvoie la liste des identifiants des
différents parkings, points de départ de ces randonnées (cette liste ne devra
pas avoir de doublon).

 1 def get_parking(randos):
2 parkings = []
3 for ...:
4 if rando.depart not in parkings:
5 ...
6 return parkings

 Par exemple, get_parking([Rando(1, 1, 1), Rando(2, 2, 1),
Rando(3, 1, 2)]) renvoie [1, 2].

9. Recopier et compléter la ligne 4 de la fonction get_nb_rando qui prend en
paramètres un identifiant de parking et une liste de randonnées, et qui renvoie
le nombre de randonnées qui partent de ce parking.

 1 def get_nb_rando(parking, randos):
2 nb = 0
3 for rando in randos:
4 if ...:

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 10 / 15

5 nb = nb + 1
6 return nb

 Par exemple, get_nb_rando(1, [Rando(1, 1, 1), Rando(2, 2,
1), Rando(3, 1, 2)]) renvoie 2.

10. Écrire une fonction nb_rando_par_parking qui prend en paramètre une liste
de randonnées et qui renvoie un dictionnaire qui associe à chaque identifiant
de parking le nombre de randonnées qui partent de ce parking.

 Par exemple, nb_rando_par_parking([Rando(1, 1, 1), Rando(2,
2, 1), Rando(3, 1, 2)]) renvoie {1:2, 2:1}.

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

