
25-NSIJ1NC1 Page : 11 / 15

Exercice 3 (8 points)

Cet exercice porte sur l’algorithmique, la représentation binaire des entiers positifs et
la programmation en langage Python.

Partie A : Modélisation du problème

On s’intéresse à un jeu de calcul mental appelé Objectif somme. Le jeu se joue sur
un plateau de 5x5 cases. Chaque case contient un chiffre non nul de 1 à 9. On dispose
également de nombres cibles en ligne et en colonne. Le but est de trouver les cases
du tableau à vider afin d’atteindre les cibles en ligne et en colonne :

• sur chaque ligne, la somme des cases restantes doit valoir la cible de cette ligne
;

• sur chaque colonne, la somme des cases restantes doit valoir la cible de cette
colonne.

De plus, il faut conserver au moins un chiffre par ligne.

Par exemple, la figure suivante représente un plateau de jeu et une solution :

Figure 1. Plateau de jeu (à gauche) et une solution (à droite).

Les lignes du plateau seront nommées de L0 à L4 et les colonnes de C0 à C4.

Ainsi l’exemple de la figure 1, la ligne L1 fait référence aux valeurs 8,6,3,5,1 du plateau
et la colonne C3 fait référence aux valeurs 3,5,2,8,8 du plateau.

Dans la suite, on suppose que les cibles sont nécessairement des entiers entre 1 et
45.

1. Expliquer pourquoi on fait cette hypothèse.

2. Donner la plus petite valeur de cible que la ligne [6,4,5,8,2] peut atteindre.
Donner aussi la plus grande valeur de cible que la ligne peut atteindre.

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 12 / 15

Dans la suite on appelle plateau une liste de 5 listes de 5 entiers. Chacune des listes
de 5 entiers représente une ligne. Les entiers de ces listes sont compris entre 0 et 9,
0 représente une case vide. Pour représenter un jeu, un plateau doit être accompagné
de deux listes de 5 entiers : la liste des cibles de lignes, la liste des cibles des colonnes.

Voici une représentation en langage Python de la figure 1 :

plateau_ex = [[7, 9, 2, 3, 2],
 [8, 6, 3, 5, 1],
 [7, 7, 3, 2, 7],
 [6, 4, 5, 8, 2],
 [8, 6, 8, 8, 4]]

ciblesLignes_ex = [13, 9, 12, 6, 4]

ciblesColonnes_ex = [15, 13, 5, 2, 9]

3. Écrire une fonction extraireLigne qui prend en paramètre un plateau et un
indice i (i compris entre 0 et 4 inclus) et renvoie la ligne Li du plateau. Par
exemple, la valeur de retour de l’appel extraireLigne(plateau, 0) est
[7, 9, 2, 3, 2].

4. Écrire une fonction extraireColonne qui prend en paramètre un plateau et
un indice i (compris entre 0 et 4 inclus) et renvoie la colonne Ci du plateau. Par
exemple, la valeur de retour de l’appel extraireColonne(plateau, 1) est
[9, 6, 7, 4, 6].

Partie B : Simplification du problème

Dans la figure 1, la solution comporte des cases vides. Ces cases correspondent aux
chiffres que l’on a éliminés. En langage Python, on représentera ces cases vides par
des zéros. Ainsi, pour éliminer du plateau un chiffre, il suffira de le remplacer par 0.

5. Donner la représentation en langage Python du plateau de la solution proposée.

On se propose d’utiliser deux règles pour éliminer simplement certains chiffres du
plateau.

Règle 1 : on remarque que les chiffres d’une ligne ou d’une colonne donnée du plateau
doivent être inférieurs ou égaux à la cible. Par exemple, pour la ligne L4 de la figure 1,
la cible est 4, on peut alors éliminer tous les chiffres 8 et 6. En appliquant la règle 1,
L4 devient alors [0, 0, 0, 0, 4].

6. Pour le jeu représenté à gauche sur la figure 1, donner en Python le plateau
obtenu en appliquant la règle 1 à chaque ligne.

La fonction à compléter regle1 ci-dessous est une implémentation de la règle 1. Elle
prend en paramètre plateau, ciblesLignes et ciblesColonnes décrivant un jeu
comme expliqué plus haut, et elle modifie plateau en appliquant la règle 1 à chaque
ligne et à chaque colonne.

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 13 / 15

 1 def regle1(plateau, ciblesLignes, ciblesColonnes):
 2 for i in range(5):
 3 tab = extraireLigne(plateau, i)
 4 cible = ...
 5 for j in range(5):
 6 if tab[j] > cible:
 7 plateau[i][j] = 0
 8 for j in range(5):
 9 tab = extraireColonne(plateau, j)
10 cible = ...
11 for i in range(5):
12 if tab[i] > cible:
13 plateau[i][j] = 0

7. Recopier et compléter les lignes 4 et 10 pour compléter le code de la fonction
regle1.

Règle 2 : S’il n’y a qu’un seul nombre impair dans une ligne ou une colonne dont la
cible est paire, on peut éliminer ce nombre impair. Par exemple, pour la ligne L3 de la
figure 1, la cible est 6 et il n’y a qu’un nombre impair : 5. On peut donc éliminer ce 5.

8. Écrire une fonction unImpair qui prend comme paramètre une liste d’entiers,
et qui renvoie True si la liste ne contient qu’un seul entier impair et False
sinon.

La fonction à compléter regle2 ci-dessous est une implémentation de la règle 2. Elle
prend en paramètre plateau, ciblesLignes et ciblesColonnes décrivant un jeu
comme expliqué plus haut, et elle modifie plateau en appliquant la règle 2 à chaque
ligne et à chaque colonne.

9. Recopier et compléter les lignes 4, 5, 11 et 12 pour compléter le code de la
fonction regle2 ci-dessous qui prend comme paramètre un plateau, une
ciblesLignes et une ciblesColonnes et qui applique la règle 2.

 1 def regle2(plateau, ciblesLignes, ciblesColonnes):
 2 for i in range(5):
 3 ligne = extraireLigne(plateau, i)
 4 ...
 5 if ...:
 6 for j in range(5):
 7 if plateau[i][j] % 2 == 1:
 8 plateau[i][j] = 0
 9 for j in range(5):
10 colonne = extraireColonne(plateau, j)
11 ...
12 if ...:
13 for i in range(5):

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 14 / 15

14 if plateau[i][j] % 2 == 1:
15 plateau[i][j] = 0

Ces règles permettent de simplifier le jeu mais pas de le résoudre dans tous les cas.
Il est nécessaire d’utiliser d’autres méthodes.

Partie C : Problème sur une ligne et représentation binaire

Pour aider à la résolution du jeu Objectif somme, on cherche dans cette partie à
résoudre le problème sur une ligne seulement. Il s’agit de trouver les nombres d’une
liste de 5 entiers dont la somme est égale à un nombre cible.

Par exemple, une solution pour la liste [6, 4, 5, 8, 2] avec la cible 6 est de
conserver le chiffre 6 uniquement. Une autre solution est de conserver le 4 et le 2.

On représente la première solution (conserver le 6) par la liste [1, 0, 0, 0, 0].
Cela signifie que la solution choisie est uniquement le premier élément de la liste. La
liste [1, 0, 0, 0, 0] est appelée un masque solution du problème. Le masque
solution correspondant à la solution avec le 4 et le 2, est alors [0, 1, 0, 0, 1].

10. Expliquer pourquoi [1, 1, 0, 0, 1] est un masque solution pour la liste
[1, 2, 3, 5, 2] et la cible 5. Donner tous les autres masques solutions.

11. Écrire une fonction somme qui prend comme paramètres une liste de 5 entiers
et un masque (une liste de taille 5 de 0 et de 1) et qui renvoie la somme des
chiffres du tableau correspondant au masque. Par exemple, somme([1, 5,
3, 4, 8], [0, 1, 1, 0, 1]) doit renvoyer 5 + 3 + 8 = 16.

On peut remarquer que les masques solutions correspondent à des nombres en
écriture binaire. Par exemple, le masque [0, 1, 0, 0, 1] correspond à l’entier 9
car 0 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 1 × 1 = 9. Ainsi, on représente les masques
possibles par des nombres en écriture binaire sur 5 bits.

12. Donner la représentation binaire sur 5 bits de l’entier 26 sous la forme d’une
liste de taille 5.

13. Expliquer pourquoi on ne représente que les entiers compris entre 0 et 31 sur 5
bits.

14. Écrire une fonction dec2bin qui prend comme paramètre un entier compris
entre 0 et 31 et qui renvoie sa représentation binaire sous la forme d’une liste
de 5 bits. Par exemple la valeur de retour de l’appel dec2bin(9) est [0, 1,
0, 0, 1].

Pour résoudre le problème, on se propose de générer tous les masques possibles
avec la fonction dec2bin et de tester si ce sont des masques solutions. On stockera
alors tous ces masques solutions dans une liste. On pourra utiliser la méthode append
appliquée à une liste. Cette méthode permet d’ajouter un élément en fin de liste. Par
exemple, à l’issue du code suivant, la liste solutions est [1, 2] :

EducN_MDDc4MT3kyMjIe0Mj3Q5MtjAyNT8EyMjMUwMDqE0MTTAg

25-NSIJ1NC1 Page : 15 / 15

solutions = [] # liste vide
solutions.append(1)
solutions.append(2)

15. Écrire une fonction masques_solutions qui prend comme paramètres une
liste de taille 5 entiers et une cible, et qui renvoie la liste de tous les masques
solutions correspondant.

Partie D : Retour au jeu “Objectif Somme”

Finalement, on vérifie qu’un plateau proposé comme solution respecte bien les
contraintes sur les lignes et les colonnes.

16. Écrire une fonction teste_solution qui prend comme paramètres un
plateau, la liste des cibles des lignes, la liste des cibles des colonnes, et qui
retourne True si les valeurs des cases restantes du plateau vérifient bien les
cibles (sur chaque ligne et sur chaque colonne), et False sinon.

