
25-NSIJ2AS1 Page : 8 / 19

Exercice 2 (6 points)

Cet exercice porte sur la structure de pile, la programmation objet et l’algorithmique.

Défi Tubes est un jeu à un joueur. Le joueur dispose de 4 tubes. Chaque tube peut
contenir de 0 à 3 phases. Chaque phase possède une couleur. Il y a 3 couleurs
possibles. On peut s’imaginer ces phases comme des palets de couleur dans le tube.
Pour modéliser les couleurs, on utilisera les entiers 1, 2 et 3. Lorsqu’un tube contient
0 phase, on dit que le tube est vide. Lorsqu’il en a 3, on dit qu’il est plein. Lorsqu’un
tube n’est pas vide, sa dernière couleur est la couleur de sa phase supérieure.

Figure 1. Exemple de tube.

Le jeu Défi Tube consiste à verser successivement la dernière couleur des tubes dans
les autres tubes avec les contraintes suivantes :

• on ne peut rien verser dans un tube plein ;
• pour verser un tube 1 dans un tube 2, il faut que la dernière couleur du tube 1

soit la même que celle du tube 2 ou que le tube 2 soit vide. Dans ces deux cas,
on retire la dernière couleur du tube 1 pour qu’elle devienne la dernière couleur
du tube 2. On réitère cela tant que la dernière couleur du tube 1 est la même
et que le tube 2 n’est pas plein.

Le jeu se termine lorsque 3 des 4 tubes sont pleins et que leurs 3 phases sont de
même couleur.

Les figures 2, 3, 4 et 5 ci-après représentent un exemple de partie du jeu Défi Tube.

25-NSIJ2AS1 Page : 9 / 19

Figure 2. État initial du jeu.

Figure 3. On a versé le tube 1 dans le tube 2.

Figure 4. On a versé le tube 4 dans le tube 1.

Figure 5. On a versé le tube 3 dans le tube 4.

À la figure 5, la partie est terminée.

25-NSIJ2AS1 Page : 10 / 19

1. Donner un exemple d’une autre séquence de versements qui aurait permis de
terminer le jeu en partant de la situation de la figure 4.

Ainsi le déroulement du jeu n’est pas unique.

Partie A : Les tubes

Pour modéliser le jeu Défi Tube, chaque tube sera représenté par une pile finie de
taille maximale 3. Les tubes sont modélisés par des objets de la classe tube dont le
code est donné ci-dessous.

 1 class tube:
 2 def __init__(self):
 3 self.taille = 0
 4 self.contenu = [0, 0, 0]
 5
 6 def est_vide(self):
 7 return self.taille == 0
 8
 9 def empiler(self, couleur):
10 if self.taille < 3:
11 self.contenu[self.taille] = couleur
12 self.taille = self.taille + 1
13
14 def depiler(self):
15 if self.taille > 0:
16 self.taille = self.taille - 1
17 couleur = self.contenu[...]
18 self.contenu[self.taille] = 0
19 return ...
20 else:
21 return ...

Chaque instance de la classe tube a deux attributs :

• l’attribut taille représente le nombre d’éléments non nuls dans le tube;

• l’attribut contenu représente la liste (de taille 3) des éléments du tube.
Lorsqu’une phase n’est pas vide, elle contiendra une couleur 1, 2, ou 3.
Lorsqu’une phase est vide, sa valeur est 0.

Par exemple, le tube suivant :

25-NSIJ2AS1 Page : 11 / 19

Figure 6. tube1

sera modélisé avec la classe tube par le code :

1 t = tube()
2 t.taille = 2
3 t.contenu = [1, 3, 0]

2. Expliquer ce qu’est la structure de pile en précisant ce que sont les méthodes
empiler et depiler.

3. Expliquer les lignes 11 et 12 du code de la classe tube.

4. Recopier et compléter le code de la méthode depiler précédente. Lorsque le
tube est vide, la méthode depiler doit renvoyer -1.

5. Écrire une méthode est_plein de la classe tube. Cette méthode renvoie
True si le tube est plein et False si le tube n’est pas plein.

6. Écrire une méthode est_homogene de la classe tube qui renvoie True si le
tube est plein et si son contenu est composé de trois fois la même couleur, et
qui renvoie False sinon.

7. Écrire une méthode derniere_couleur de la classe tube qui renvoie le
numéro de la dernière couleur du tube. Si le tube est vide, la méthode renverra
la valeur -1.

Le code incomplet d’une méthode verser de la classe tube est donné ci-dessous :

1 def verser(self, other):
2 while ...
3 couleur = self.depiler()
4 other.empiler(couleur)

8. Recopier et compléter le code de cette méthode verser afin de verser
l’instance self de la classe tube dans l’instance other. On veillera à vérifier
toutes les conditions nécessaires au bon déroulement de cette opération.

25-NSIJ2AS1 Page : 12 / 19

Partie B : Le jeu

Pour modéliser le jeu, on appellera état du jeu une liste de 4 tubes. Le code suivant
permet de représenter l’état de la figure 2.

 1 tube1 = tube()
 2 tube1.contenu = [1, 3, 0]
 3 tube1.taille = 2
 4 tube2 = tube()
 5 tube2.contenu = [3, 3, 0]
 6 tube2.taille = 2
 7 tube3 = tube()
 8 tube3.contenu = [2, 2, 0]
 9 tube3.taille = 2
10 tube4 = tube()
11 tube4.contenu = [1, 1, 2]
12 tube4.taille = 3
13 etat = [tube1, tube2, tube3, tube4]

9. En utilisant la méthode verser et la variable etat représentant la figure 2,
écrire un code permettant de faire passer la variable etat de la représentation
en figure 2 à celle de la figure 3.

10. Écrire une fonction gagne qui prend comme argument un état et qui renvoie
True si la partie est terminée et False sinon.

