
25-NSIJ2ME3 Page : 2 / 19

Exercice 1 (6 points)

Cet exercice porte sur la programmation Python et la cryptographie.

Le chiffrement Playfair, popularisé par Lord Playfair et utilisé par l’armée britannique

durant les guerres du XXème siècle, est basé sur le chiffrement de paires de lettres

(appelées digrammes).

Partie A : la clef de chiffrement

Ce chiffrement utilise un tableau de 5×5 lettres contenant un mot clef. On remplit le

tableau avec les lettres du mot clef (sans doublons), puis on le complète avec les

lettres restantes de l’alphabet (sans la lettre W) dans leur ordre alphabétique. Une

lettre n’apparait qu’une seule fois dans le tableau.

Par exemple, si on choisit comme clef le mot PLAYFAIR, le carré de chiffrement

obtenu est le suivant :

Figure 1. Carré de chiffrement obtenu avec le mot clef PLAYFAIR

On commence par les lettres de la clef (cases blanches) sans les doublons (ici le A)

puis on complète le tableau (cases grisées) avec les lettres restantes de l’alphabet,

dans l’ordre alphabétique.

1. Donner le carré de chiffrement si la clef est EPREUVEDENSI.

On donne ci-dessous le code Python de la fonction creer_liste_clef qui prend en

paramètre la clef de chiffrement et renvoie une liste contenant 25 lettres ordonnées de

la façon suivante : d’abord les lettres de la clef choisie (sans doublon) puis les lettres

de l’alphabet restantes (classées par ordre alphabétique).

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 3 / 19

 1 def creer_liste_clef(clef):

 2 """

 3 hypothèse : la clef ne contient pas la lettre W

 4 """

 5 deja_utilises = []

 6 # alphabet sans la lettre W:

 7 alphabet = 'ABCDEFGHIJKLMNOPQRSTUVXYZ'

 8 for i in range(len(clef)):

 9 if not (clef[i] in deja_utilises):

10 deja_utilises.append(clef[i])

11 for lettre in alphabet:

12 if not lettre in deja_utilises:

13 deja_utilises.append(lettre)

14 return deja_utilises

Exemple :

creer_liste_clef('PLAYFAIR')

>>> ['P', 'L', 'A', 'Y', 'F', 'I', 'R', 'B', 'C', 'D', 'E',

'G', 'H', 'J', 'K', 'M', 'N', 'O', 'Q', 'S', 'T', 'U', 'V',

'X', 'Z']

2. Donner l’assertion à insérer en début de la fonction creer_liste_clef afin

de s’assurer que l’hypothèse sur la clef soit respectée.

On donne ci-dessous le code incomplet de la fonction creer_carre qui prend en

paramètre la liste créée par la fonction creer_liste_clef et renvoie le carré de

chiffrement.

1 def creer_carre(liste_clef):

2 carre = [[0 for i in range(5)] for j in range(5)]

3 for i in range(25):

4 carre[...][...] = liste_clef[i]

5 return carre

Exemple :

creer_carre(creer_liste_clef('PLAYFAIR'))

>>> [['P', 'L', 'A', 'Y', 'F'], ['I', 'R', 'B', 'C', 'D'],

['E', 'G', 'H', 'J', 'K'], ['M', 'N', 'O', 'Q', 'S'], ['T',

'U', 'V', 'X', 'Z']]

3. Recopier et compléter la ligne 4 du code de cette fonction creer_carre, en

utilisant les opérateurs % (reste de la division entière) et // (division entière).

Partie B : chiffrer un message

Le chiffrement d’un message se fait en deux étapes :

 1ère étape : on découpe le message en digrammes (paires de lettres) ;

 2ème étape : on chiffre chacun des digrammes avec le carré de chiffrement.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 4 / 19

Pour découper le message en digrammes, on prend les lettres deux par deux en tenant

compte de deux cas particuliers :

 si les deux lettres sont identiques, on ajoute un 'X' après la première lettre et

on poursuit le découpage deux à deux à partir de la deuxième lettre ;

 s’il ne reste qu’une seule lettre, on forme une dernière paire en lui ajoutant la

lettre un 'X'.

Par exemple :

le découpage de 'BACCALAUREAT' donnera 'BA', 'CX', 'CA', 'LA', 'UR',

'EA', 'TX'

Le chiffrement d’un message se fait ensuite en chiffrant chaque digramme (paire de

lettres), de la manière suivante :

 si les lettres du digramme se trouvent sur la même ligne du carré de chiffrement,

il faut les remplacer par celles se trouvant immédiatement à leur droite (en

bouclant sur la gauche si le bord est atteint) ;

 si les lettres apparaissent sur la même colonne du carré de chiffrement, les

remplacer par celles qui sont juste en dessous (en bouclant par le haut si le bas

de la table est atteint) ;

 sinon, remplacer les lettres par celles se trouvant sur la même ligne du carré de

chiffrement, mais dans le coin opposé du rectangle défini par la paire originale.

Par exemple, si le message est 'VIVELANSI', les digrammes sont : 'VI', 'VE',

'LA', 'NS', 'IX' et leurs codages avec la clef PLAYFAIR sont :

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 5 / 19

Figure 2. Chiffrement de quelques digrammes

digramme VI VE LA NS IX

chiffré TB TH AY OM CT

On donne ci-dessous le code incomplet de la fonction couper_en_digrammes qui

prend en paramètre une chaine de caractères et renvoie la liste des digrammes la

constituant :

 1 def couper_en_digrammes(message):

 2 digrammes = []

 3 i = 0

 4 while i < len(message) - 1:

 5 if message[i] == message[i+1]:

 6 digrammes.append(message[i] + 'X')

 7 i = i + 1

 8 else:

 9 ...

10 i = i + 2

11 if i == len(message) - 1: #il reste une lettre isolée

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 6 / 19

12 digrammes.append(message[i] + 'X')

13 return digrammes

4. Donner le code de la ligne 9 manquante de cette fonction

couper_en_digrammes.

5. Donner le résultat de l’appel couper_en_digrammes('BONJOUR').

6. Donner le chiffrement du message BONJOUR avec le carré de chiffrement

PLAYFAIR donné en Figure 1.

7. Donner le code Python de la fonction ligne_colonne qui prend en

paramètres une lettre et le carré de chiffrement créé par la fonction

creer_carre, et qui renvoie les coordonnées de la lettre dans le carré de

chiffrement.

 Exemple (avec le carré de chiffrement de la Figure 1) :

 ligne_colonne('A', carre)

>>> (0, 2)

ligne_colonne('N', carre)

>>> (3, 1)

8. Donner le code Python de la fonction sur_la_meme_ligne qui prend en

paramètres un digramme et le carré de chiffrement créé par la fonction

creer_carre, et qui renvoie True si les deux lettres du digramme sont sur la

même ligne, ou False sinon.

 Exemple (avec le carré de chiffrement de la Figure 1):

 sur_la_meme_ligne('RT', carre)

>>> False

sur_la_meme_ligne('PL', carre)

>>> True

On dispose pour la suite de la fonction sur_la_meme_colonne, similaire à

sur_la_meme_ligne mais en colonne.

Voici le code incomplet de la fonction chiffrer_digramme qui prend en paramètres

le carré de chiffrement et un digramme, et qui renvoie le digramme chiffré

correspondant :

 1 def chiffrer_digramme(digramme, carre):

 2 lettre1 = digramme[0]

 3 lettre2 = digramme[1]

 4 i1, j1 = ligne_colonne(lettre1, carre)

 5 i2, j2 = ligne_colonne(lettre2, carre)

 6 if sur_la_meme_ligne(digramme, carre):

 7 digramme_chiffre = carre[i1][(j1 + 1)%5] +

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 7 / 19

carre[i2][(j2 + 1)%5]

 8 elif sur_la_meme_colonne(digramme, carre):

 9 digramme_chiffre = ...

10 else:

11 digramme_chiffre = ...

12 return digramme_chiffre

9. Donner le code complet des lignes 9 et 11 de cette fonction

chiffrer_digramme.

10. Écrire le code python de la fonction chiffrer_playfair qui prend en

paramètres deux chaînes de caractères message et clef correspondant au

message à chiffrer et au mot-clef choisi, et qui renvoie le message chiffré, en
utilisant les fonctions déjà écrites précédemment.

 Exemple :

 chiffrer_playfair('VIVELANSI', 'PLAYFAIR')

>>> 'TBTHAYOMCT'

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

