
25-NSIJ2ME3 Page : 13 / 19

Exercice 3 (8 points)

Cet exercice porte principalement sur les bases de données, les graphes et la

programmation de base en Python.

Un supermarché utilise une base de données qui contient des informations sur les

produits, les fournisseurs, les commandes passées et leurs détails. Le modèle

relationnel de cette base est donné par le schéma ci-dessous :

Figure 1. Schéma relationnel de cette base

Dans ce schéma, les clés primaires sont soulignées et les clés étrangères sont

précédées du symbole #. Le type de chaque attribut est indiqué entre parenthèses.

On considère l’extrait de la base de données ci-dessous :

Table Commandes

id_commande date_commande total_commande

1 03/06/2025 176.00

2 08/12/2024 1150.00

3 21/04/2025 155.00

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 14 / 19

Table Produits

id_produit nom categorie prix quantite_stock id_fournisseur

1 Yaourts

blanc x 4

Alimentaire 2.80 50 2

2 Lait Alimentaire 1.20 200 2

3 Pain Alimentaire 1.50 100 4

4 Harry

Potter 1

Livre 15.00 20 3

5 Jeu

d’échecs

Jeux 40.00 30 3

6 T-shirt

taille M

Vêtement 10.00 80 1

7 Jeans

taille M

Vêtement 25.00 60 5

Table Fournisseurs

id_fournisseur nom adresse ville pays

1 Moda e stile Via della Moda, 45 Milano Italie

2 Laiteries Unies 22 Avenue des Vaches Lisieux France

3 Livres en Folie 56 Boulevard des

Livres

Toulouse France

4 Boulangerie du

Coin

34 Rue du Pain Nantes France

5 Estilo Español Calle de la Moda, 123 Madrid Espagne

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 15 / 19

Table Details

id_details id_commande id_produit quantite prix_unitaire

1 1 1 20 2.80

2 1 2 100 1.20

3 2 6 40 10.00

4 2 7 30 25.00

5 3 5 2 40.00

6 3 4 5 15.00

L’énoncé de cet exercice utilise tout ou une partie des mots clefs du langage SQL

suivants : SELECT, DISTINCT, FROM, WHERE, JOIN … ON, UPDATE … SET,

DELETE, INSERT INTO … VALUES.

Avant de mettre en vente un nouveau produit, il faut le créer dans la base.

1. Écrire une requête SQL permettant d’ajouter le produit croissant référencé dans
la base sous le numéro 10. Il est vendu au prix unitaire de 0,90 €. Le magasin
se fournit, pour ce produit, auprès de Boulangerie du Coin.

Le fournisseur Livres en Folie a changé d’entrepôt. Il se trouve maintenant au 78 Rue

des Jeux à Elbeuf (France).

2. Écrire la requête SQL permettant de mettre à jour la base de données.

3. Décrire le résultat obtenu avec la requête SQL ci-dessous :

 SELECT nom

FROM Produits

WHERE categorie = 'Alimentaire' ;

4. Écrire une requête SQL permettant d’afficher les détails des commandes
passées ayant un total de commande supérieur ou égal à 1000 €.

5. Écrire une requête SQL permettant d’afficher le nom des fournisseurs basés en
Espagne ou en Italie.

6. Écrire une requête SQL qui permet d’afficher le nom de tous les fournisseurs
qui ont vendu des produits alimentaires.

7. Écrire une requête SQL permettant d’afficher le numéro et la date des
commandes ainsi que le nom des fournisseurs où des produits de catégories

Vêtement ont été commandés.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 16 / 19

Un fournisseur, dont l’entrepôt est situé à Toulouse, approvisionne différents

supermarchés à travers la France, notamment dans les villes de Bordeaux, Calais,

Lyon, Marseille, Nantes, Paris et Strasbourg.

On utilise un graphe dont les sommets sont les initiales des villes où se situent les

supermarchés et l’entrepôt du fournisseur. Les arêtes sont pondérées avec les

distances en kilomètres entre les villes.

Figure 2. Graphe représentant le réseau routier

8. Déterminer le plus court chemin (en termes de distance) entre Toulouse et
Calais.

9. Écrire la liste des sommets dans l’ordre d’un parcours en profondeur à partir de
Calais (les sommets sont toujours pris dans l’ordre alphabétique s’il y a un choix
à faire).

10. Écrire la liste des sommets dans l’ordre d’un parcours en largeur à partir de
Calais (les sommets sont toujours pris dans l’ordre alphabétique s’il y a un choix
à faire).

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 17 / 19

Pour implémenter ce graphe, on utilise le dictionnaire en Python ci-dessous :

graphe = {'Paris': {'Strasbourg': 490, 'Lyon': 465,

 'Nantes': 385, 'Calais': 300},

 'Strasbourg': {'Paris': 490, 'Lyon': 470,

 'Calais': 600},

 'Lyon': {'Paris': 465, 'Strasbourg': 470,

 'Toulouse': 405, 'Nantes': 600},

 'Nantes': {'Paris': 385, 'Lyon': 600,

 'Bordeaux': 340, 'Calais': 550},

 'Calais': {'Paris': 300, 'Strasbourg': 600,

 'Nantes': 550},

 'Toulouse': {'Lyon': 405, 'Bordeaux': 250,

 'Marseille': 400},

 'Marseille': {'Toulouse': 400},

 'Bordeaux': {'Nantes': 340, 'Toulouse': 250}

}

Dans cette implémentation, il manque la route entre Lyon et Marseille.

11. Écrire les instructions permettant d’ajouter dans le dictionnaire graphe la route

entre les villes de Lyon et Marseille sachant que la distance les séparant est de
315 km.

12. Écrire une fonction distance qui prend en paramètres le dictionnaire graphe

et deux villes (de type str) et qui renvoie la distance entre ces deux villes si

elles sont adjacentes, ou None sinon.

Pour déterminer le chemin entre deux villes quelconques (s’il en existe un) dans le

dictionnaire graphe, on utilise la fonction trouver_chemin(graphe,

ville_depart, ville_destination) qui renvoie la liste des villes parcourues.

On suppose que cette fonction est codée en Python.

13. Écrire une fonction distance_totale qui prend en paramètre le dictionnaire

graphe et deux villes (de type str) et qui renvoie la distance entre ces deux

villes s’il existe un chemin entre elles sinon elle retourne None.

On décide désormais de prendre en compte le temps nécessaire pour parcourir les

distances entre les villes.

Ainsi les arêtes du graphe sont pondérées à l’aide d’une liste contenant la distance (en

km arrondie à l’unité) et la durée (en heure arrondie à deux décimales) nécessaire pour

effectuer le trajet entre les deux villes.

Exemple :>>> graphe['Paris']

{'Strasbourg': [490, 6.37], 'Lyon': [465, 5.58], 'Nantes':

[385, 3.47], 'Calais': [300, 3.3]}

14. À partir de l’exemple précédent, déterminer la valeur de

graphe['Paris']['Nantes'][1].

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 18 / 19

La fonction ratio_duree_distance ci-dessous prend en paramètre le dictionnaire

graphe. Elle permet de calculer le ratio durée/distance pour toutes les arêtes du

graphe et de l’ajouter à la pondération de chaque arête :

1 def ratio_duree_distance(graphe):

2 for ville, connexions in ...:

3 for destination, valeurs in ...:

4 distance, duree = ...

5 ratio = ...

6 graphe[ville][destination].append(...)

7 return graphe

Grâce à cette fonction, on obtient la mise à jour du dictionnaire graphe :

graphe = {'Paris': {'Strasbourg': [490, 6.37, 0.013],

 'Lyon': [465, 5.58, 0.012],

 'Nantes': [385, 3.47, 0.009],

 'Calais': [300, 3.3, 0.011]},

 'Strasbourg': {'Paris': [490, 6.37, 0.013],

 'Lyon': [470, 4.23, 0.009],

 'Calais': [600, 9.0, 0.015]},

 'Lyon': {'Paris': [465, 5.58, 0.012],

 'Strasbourg': [470, 4.23, 0.009],

 'Toulouse': [405, 4.86, 0.012],

 'Marseille': [315, 2.84, 0.009],

 'Nantes': [600, 7.2, 0.012]},

 'Nantes': {'Paris': [385, 3.47, 0.009],

 'Lyon': [600, 7.2, 0.012],

 'Bordeaux': [340, 4.08, 0.012],

 'Calais': [550, 8.25, 0.015]},

 'Calais': {'Paris': [300, 3.3, 0.011],

 'Strasbourg': [600, 9.0, 0.015],

 'Nantes': [550, 8.25, 0.015]},

 'Toulouse': {'Lyon': [405, 4.86, 0.012],

 'Bordeaux': [250, 2.5, 0.010],

 'Marseille': [400, 6.0, 0.015]},

 'Marseille': {'Lyon': [315, 2.84, 0.009],

 'Toulouse': [400, 6.0, 0.015]},

 'Bordeaux': {'Nantes': [340, 4.08, 0.012],

 'Toulouse': [250, 2.5, 0.010]}

}

15. Recopier et compléter la fonction ratio_duree_distance.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 19 / 19

Un élève souhaite utiliser ChatGPT pour trouver un algorithme qui détermine le chemin

à privilégier entre deux villes. Il fournit son script Python contenant le dictionnaire

graphe (et son descriptif) et les fonctions précédentes. Il écrit le prompt suivant :

Écris un algorithme, en langage naturel, pour trouver un chemin entre deux villes en

minimisant le ratio durée/distance où à chaque étape, on choisira l’arête avec le ratio

le plus faible.

16. Déterminer le nom que l’on donne à un algorithme qui construit une solution
étape par étape, comme celui demandé par l’élève.

17. Déterminer le chemin trouvé grâce à cet algorithme entre Toulouse et Calais.

