
25-NSIJ2NC1 Page : 12 / 18

Exercice 3 (8 points)

Cet exercice porte sur les structures de données, la programmation, les graphes.

Partie A

Le siteswap est une notation mathématique pour codifier les figures de jonglerie. Elle
est aujourd’hui utilisée par des jongleurs et jongleuses dans le monde entier.
Beaucoup de figures sont alors simplement désignées par leur siteswap, comme par
exemple 441, 7531 ou encore 453.

On modélise le jonglage de la manière suivante : au lieu de calculer des trajectoires
complexes, on considère simplement un rythme régulier sur lequel on jongle, et une
balle est lancée à chacun de ses « temps ».

Les lancers sont caractérisés par un nombre entier positif, représentant simplement
le nombre de « temps » au bout duquel la balle revient dans la main du jongleur et
peut être relancée.

À un instant donné, on peut représenter ce qu’on appelle un état, c’est-à-dire une
sorte de photographie des balles « en l’air ». On notera ces états sous forme de
tableaux Python, contenant des 0 et des 1. Un 0 représente un espace vide et un 1
représente une balle.

Si on considère l’état e1 = [1, 0, 0, 1, 1, 0] : son premier élément, e1[0]
vaut 1, et représente donc la balle prête à être relancée. Si e1[0] valait 0, aucune
balle à relancer ne serait présente. Ensuite chaque e1[i] représente la présence ou
non d’une balle qui atterrira dans la main de la jongleuse au bout de i temps.

Figure 1. Représentation de l’état e1

L’état e1 ci-dessus représente donc un instant d’une figure à 3 balles, l’une est dans
la main de la jongleuse, et deux autres balles sont plus haut, et retomberont dans la
main dans respectivement 3 et 4 temps puisque e1[3] et e1[4] sont égaux à 1 et
les autres à 0.

Comme l’indice maximal est de 5 dans le tableau, on dira que la hauteur maximale
est 5.

EducN_MDDc4MT3kyMjIe0Mj2Q5MtjAyNT8EyMjMUwMDnE1NEDcg

25-NSIJ2NC1 Page : 13 / 18

Lorsque la jongleuse attrape la balle, elle va la relancer, dans un emplacement en
l’air qui est « libre », car elle ne souhaite pas recevoir à un moment donné deux
balles en même temps.

Dans l’exemple e1 = [1, 0, 0, 1, 1, 0], la jongleuse peut effectuer un lancer
de 1, un lancer de 2 ou un lancer de 5, car les emplacements e1[1], e1[2] et
e1[5] sont à 0, donc « libres ». Elle ne peut pas lancer un 3 ou un 4.

Figure 2. Transitions possibles depuis l’état e1

Si le premier élément de l’état est à 0, cela signifie que la jongleuse n’a aucune balle
dans sa main à cet instant. Elle ne peut donc pas lancer de balle, et on appellera ça,
par convention, un lancer « 0 ». Un lancer « 0 » n’est possible que dans cette
situation.

1. Si on se donne l’état e2 = [1, 1, 0, 1, 0, 0] indiquer quels sont les
lancers possibles.

2. Même question pour l’état e3 = [0, 1, 1, 0, 1].

3. Recopier et compléter les lignes 4, 7 et 8 du code de la fonction
lancer_possible ci-dessous. Elle prend en argument un tableau etat
représentant un état et un entier lancer, et renvoie True si le lancer est
possible, et False sinon.

 1 def lancer_possible(etat, lancer):
 2 if lancer >= len(etat) or lancer < 0:
 3 return False
 4 if lancer == 0 and ...
 5 return False
 6 if lancer > 0:
 7 if etat[0] == 0 or ...
 8 ...
 9 return True

Lorsqu’on lance une balle, elle vient se placer là où on l’a prévu, puis la gravité fait
son effet et toutes les balles redescendent d’un cran.

Ainsi, si depuis l’état e1 = [1, 0, 0, 1, 1, 0] on lance un 2, on obtient l’état
[0, 0, 1, 1, 1, 0] puis l’état [0, 1, 1, 1, 0, 0] après effet de la gravité :

EducN_MDDc4MT3kyMjIe0Mj2Q5MtjAyNT8EyMjMUwMDnE1NEDcg

25-NSIJ2NC1 Page : 14 / 18

Figure 3. État e1, puis lancer de 2, puis effet de la gravité

4. Depuis l’état e2 = [1, 1, 0, 1, 0, 0], on effectue un lancer de 5.
Donner l’état qu’on obtient après le lancer et l’effet de la gravité.

On souhaite écrire une fonction lancer_balle qui prend en paramètres un état
etat de jonglage (comme décrit ci-dessus) et un entier positif lancer qui
représente un lancer. Elle ne doit pas modifier l’état passé en paramètre, mais doit
renvoyer un nouvel état correspondant au résultat du lancer. On suppose sans le
vérifier que le lancer est forcément valide.

5. Recopier et compléter la ligne 4 du code de la fonction lancer_balle
ci-dessous. On peut insérer plusieurs lignes si besoin.

 1 def lancer_balle(etat, lancer):
2 # copie de l'état pour ne pas le modifier
3 nouvel_etat = [balle for balle in etat]
4 ...
5 return nouvel_etat

Partie B

6. Écrire une fonction liste_lancers_possibles qui prend en paramètre un
état etat et qui renvoie une liste d’entiers correspondant à l’ensemble des
lancers possibles à partir de cet état.

 Par exemple

 1 >>> liste_lancers_possibles(e1)
2 [1, 2, 5]
3 >>> liste_lancers_possibles([0, 1, 1, 1, 0])
4 [0]

On souhaite maintenant générer toutes les suites de lancers possibles à partir d’un
état donné, c’est-à-dire tous les lancers consécutifs qu’on peut faire à partir de cet
état.

EducN_MDDc4MT3kyMjIe0Mj2Q5MtjAyNT8EyMjMUwMDnE1NEDcg

25-NSIJ2NC1 Page : 15 / 18

Par exemple, à partir de l’état e1 = [1, 0, 0, 1, 1, 0] on peut lancer un 1, un
2 ou un 5. Si on a lancé un 1 on obtient l’état [1, 0, 1, 1, 0, 0] (on rappelle
que cet état est obtenu après le lancer et l’effet de gravité) et on peut lancer un 1, un
4 ou un 5. Et de même pour les états obtenus à partir de lancers 2 ou 5.

On peut alors calculer qu’à partir de e1 on peut faire les séries de lancers de
longueur 2 suivants (notés sous forme de listes Python) : [1, 1], [1, 4], [1, 5],
[2, 0], ou [5, 0].

On aimerait obtenir tous les lancers possibles d’une longueur donnée à partir d’un
état.

Pour cela on propose la méthode suivante :

• si la longueur demandée est 0, alors la seule séquence possible est la
séquence vide ;

• sinon, on calcule quels sont les lancers possibles à partir de cet état. Pour
chacun de ces lancers, on va :

– calculer le nouvel état obtenu ;
– chercher l’ensemble des séquences possibles à partir de ce nouvel état

(d’une longueur un de moins) ;
– pour toutes ces séquences, on ajoutera le numéro du lancer au début

et on la mettra dans une liste s_possibles à renvoyer au final.

Voici la fonction calcule_sequences partiellement écrite :

 1 def calcule_sequences(etat, n):
 2 """ etat est un état de jonglerie, n est un entier.
 3 Calcule et renvoie l'ensemble des siteswaps (listes
 4 d'entiers) de longueur n qu'on peut effectuer à
 5 partir de cet état."""
 6 if n == 0:
 7 return [[]]
 8 else:
 9 s_possibles = []
10 l_lancers = ...
11 for lancer in l_lancers:
12 etat2 = ...
13 s_etat2 = calcule_sequences(etat2, n-1)
14 for ...
15 s_possibles.append([lancer] + ...)
16 return s_possibles

7. Justifier qu’il s’agit d’une fonction récursive.

8. Expliquer brièvement pourquoi elle se termine si n est un entier positif. On
admet que les boucles for présentes sont bornées et donc terminent.

EducN_MDDc4MT3kyMjIe0Mj2Q5MtjAyNT8EyMjMUwMDnE1NEDcg

25-NSIJ2NC1 Page : 16 / 18

9. Recopier et compléter les lignes 10, 12, 14 et 15 de cette fonction.

Partie C

Plutôt que de calculer l’ensemble des séquences possibles à partir d’un état donné,
on préfère calculer d’un coup, dès le début, l’ensemble des états et des lancers
possibles.

On représentera ces données par un graphe orienté, dont les sommets sont les
états, et on a un arc d’un état e à un état f si le lancer n permet de passer de l’état e
à l’état f. Dans ce cas on inscrit le n à proximité l’arc entre e et f et on dit que c’est
l’étiquette de l’arc.

On travaille donc avec un graphe orienté étiqueté.

Ce graphe est également appelé automate des états.

Voici par exemple l’automate des états des jonglages à deux balles, de hauteur
maximale 4.

Figure 4. Ensemble des états et lancers, à deux balles et hauteur maximale 4

On a choisi de représenter les états par des chaînes de caractères : '11000'
représente l’état [1, 1, 0, 0, 0] dans les parties précédentes.

On souhaite stocker ce graphe sous forme de dictionnaire de listes d’adjacences : les
clés sont les états, et les valeurs sont des listes de tuple : le premier élément est un
entier, le numéro du lancer possible, et le second est l’état qu’on obtient lorsqu’on
applique ce lancer.

10. Recopier et compléter le code Python permettant de représenter l’automate de
la figure 4 dans une variable automate :

EducN_MDDc4MT3kyMjIe0Mj2Q5MtjAyNT8EyMjMUwMDnE1NEDcg

25-NSIJ2NC1 Page : 17 / 18

 1 automate = { '11000': [(3, '10100'), (2, '11000'), (4,
'10010')],
2 '01010': [(0, '10100')],
3 '10100': ...,
4 ...: [(0, '11000')],
5 ... : ...,
6 ... : ...}

11. Écrire le code de la fonction lancer_balle_automate qui prend en
arguments un automate automate comme décrit plus haut, un état etat et
un entier lancer représentant un lancer et qui renvoie l’état obtenu lorsqu’on
lance lancer depuis l’état etat. On renvoie la chaîne vide si le lancer n’est
pas possible.

 Par exemple, pour l’automate de la Figure 4,

 1 >>> lancer_balle_automate(automate, '10010', 2)
2 '01100'
3 >>> lancer_balle_automate(automate, '11000', 1)
4 ''

Un siteswap est une suite de lancers qui correspond à un cycle dans l’automate :
autrement dit cela correspond à des lancers qu’on peut répéter en boucle : c’est une
« figure » de jonglage.

Par exemple dans le graphe de la Figure 4, la séquence 3, 1 est un siteswap : on
part de l’état '11000' puis le lancer de 3 nous amène dans l’état '10100', le lancer
de 1 nous ramène dans l’état '11000' et on peut recommencer cette figure.

La séquence 1, 2, 3, 4, 0 est également un siteswap (partant de l’état
'10100', les lancers successifs sont possibles et on revient bien à l’état de départ).

La séquence 2 est également un siteswap (reste dans l’état '11000').

On souhaite écrire une fonction parcours_sequence_depart qui prend en
argument un automate, un état de départ, et une liste de lancers, et qui renvoie l’état
dans lequel on arrive en suivant la séquence de lancers, ou bien None si l’un des
lancers était impossible.

Par exemple :

1 >>> parcours_sequence_depart(automate, '11000', [3, 1])
2 '11000'
3 >>> parcours_sequence_depart(automate, '10010', [4, 0])
4 '01100'
5 >>> parcours_sequence_depart(automate, '10100', [3, 4])
6 None

12. Écrire le code de la fonction parcours_sequence_depart. On peut utiliser
la fonction lancer_balle_automate.

EducN_MDDc4MT3kyMjIe0Mj2Q5MtjAyNT8EyMjMUwMDnE1NEDcg

25-NSIJ2NC1 Page : 18 / 18

Grâce à la fonction précédente, il est possible de vérifier qu’un siteswap est valide,
c’est-à-dire qu’il existe un état à partir duquel réaliser la figure de jonglage.

On souhaite à présent écrire une fonction departs_siteswap qui prend en
argument un automate et une liste de lancers (un potentiel siteswap), et renvoie la
liste des états de l’automate qui valide le siteswap.

Par exemple :

1 >>> departs_siteswap(automate, [1, 2, 3, 4, 0])
2 ['10100']
3 >>> departs_siteswap(automate, [2, 1, 0])
4 []

13. Écrire la fonction departs_siteswap. On peut utiliser la fonction
parcours_sequence_depart, et vérifier si le siteswap est possible à partir
de chaque état de l’automate.

