Exercice 3 (8 points)

Cet exercice porte sur I'algorithmique des tableaux, la gestion de bugs, les listes, les
piles et la programmation orientée objet.

Le but de cet exercice est d'implémenter un algorithme de pseudo-tri, appelé le tri
dictatorial.

L’exercice est constitué de trois parties indépendantes.

Pour chaque question, on peut considérer acquis les résultats et les fonctions
demandés dans les questions précédentes, méme sans les avoir traitées.

Le pseudo-tri dictatorial d’'une série d’entiers suit le principe suivant :

e s’iln’y aaucun ou un seul élément, la série est considérée comme triée et n'est
donc pas modifiée ;

* sinon:
— on conserve le premier élément de la série ;
— pour chaque élément de la série a partir du deuxieme :
* sil'élément est plus petit que le dernier élément conserve alors on
I'élimine ;
* sinon on le conserve.

Par exemple, si on considere la série 2, 3, 1, 8 :

* onconserve le 2 qui est le premier élément ;
* le 3 n'est pas plus petit que le dernier conservé (qui est 2) donc on le conserve

* le 1 est plus petit que le dernier conservé (qui est 3) donc on I'élimine ;

* le 8 n'est pas plus petit que le dernier conservé (qui est toujours 3) donc on le
conserve.

La série triée obtenue apres cet algorithme est donc 2, 3, 8.

Partie A

Dans cette partie, on implémente le tri dictatorial en utilisant le type list de Python
pour représenter une série d’entiers.

On souhaite coder une fonction tri_dictatorial qui:

e prend en parameétre une liste d’entiers serie de type list;

* renvoie une nouvelle liste d’entiers obtenue en suivant I'algorithme présenté en
introduction, c’est-a-dire une liste triee, éventuellement vide, ne contenant que
les éléments de serie a conserver ;

25-NSIPE4 Page : 10/ 14



* ne modifie pas serie.

Par exemple,sis = [5, 2, 6, 8, 3, 7], l'appel tri_dictatorial (s) devrait
renvoyer la liste [5, 6, 8] sans modifier s. On remarque que la liste obtenue est en
effet triée.

1. Donner le résultat que doit renvoyer I'appel : tri_dictatorial ([31, 45,
41, 28, 37, 108, 127, 2, 124, 421]).

2. Expliquer pourquoi le tri dictatorial n’est pas un algorithme de tri.
Edgar a écrit le programme suivant, qui prétend implémenter le tri dictatorial :

1 def tri_dictatorial(serie):

2 serie_triee = [serie[0]]

3 for 1 in range(l, len(serie)):

4 ifT serie[i1] >= serie[1 - 1]:

5 serie_triee.append(serie[i])
6 return serie_triee

Edgar souhaite tester si sa fonction fait bien ce qu’elle est censée faire.
3. Edgar réalise I'appel tri_dictatorial([8, 2, 9, 6, 12]).

Expliquer pas a pas comment la liste serie_triee se construit aprés cet
appel.

4. Edgar réalise maintenant I'appel tri_dictatorial([]) et obtient I'erreur
suivante :

Traceback (most recent call last):
File "tri_edgar.py"”, line 8, in <module>
tri_dictatorial([])
File "tri_edgar.py"™, line 2, in tri_dictatorial
result = [serie[0]]
IndexError: list index out of range

Expliquer précisément I'erreur obtenue et proposer une modification du code
d’Edgar afin que cet appel soit conforme a I'algorithme du tri dictatorial décrit en
introduction.

Dijkstra lors de la réception de son prix Turing en 1972, a notamment déclaré :

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.”

ce que I'on peut traduire par :

“Tester les programmes peut étre un moyen trés efficace d'y trouver des bugs, mais
c'est un moyen désespérément inadéquat pour prouver leur absence.”

25-NSIPE4 Page:11/14




5. Expliquer pourquoi des tests ne peuvent pas prouver de facon certaine
'absence de bugs d’'un programme en général.

Edgar décide de procéder a un test supplémentaire et réalise [I'appel
tri_dictatorial([8, 2, 3, 5, 12]). La fonction renvoie alors [8, 3, 5,
127 qui n’est pas une liste triée.

6. Expliquer la cause du probleme et proposer une modification du code d’Edgar
afin de la corriger.

Partie B

Dans cette partie, on implémente le tri dictatorial sur des listes chainées. Cette fois-ci
on va modifier la liste chainée initiale au lieu de construire une nouvelle liste.

On dispose d'une classe Maillon :

1 class Maillon:

2 def __init__ (self, val, suiv):
3 self.valeur = val
4 self.suivant = suiv

L’attribut suivant doit correspondre a un Mai I lon (le suivant de self), ou a None
si sel T est le dernier.

On dispose également d’'une classe Liste qui implémente une liste chainée avec
pour unique attribut tete qui est le maillon de téte de la liste chainée, une instance de
Maillon:
class Liste:
def __init__ (self, tete):
self.tete = tete

On peut représenter graphiquement une liste chainée de la maniére suivante, avec la
barre a hachure symbolisant la valeur None :

m1 mo m8
Figure 1. Liste chainée constituée de trois maillons m1, mO et m8.

7. Donner des instructions permettant de construire les trois maillons m1, mO et m8
et la liste chainée représentés ci-dessus. On nommera la liste chainée
ma_liste.

25-NSIPE4 Page:12/14



8. Indiquer ce que renvoie chacune des instructions ci-dessous :

ml.valeur ==

ml.suivant.valeur ==
ml.suivant.suivant == None
ml.suivant.suivant.suivant == None

9. Donner une instruction permettant de transformer ma_liste en la liste
chainée représentée ci-dessous :

] \o\—l-*lsl—l—%

On souhaite a présent une fonction tri_dictatorial_chaine qui prend en
parametre une instance de liste chainée chaine et qui modifie cette liste chainée
démarrant en suivant I'algorithme du pseudo-tri dictatorial. La fonction ne renvoie rien.

10. Recopier et compléter la fonction tri_dictatorial_chaine ci-dessous.

def tri_dictatorial_chaine(chaine):
maillon = chaine.tete
while maillon.suivant ... :
if maillon.valeur ...
maillon = ...
else:
maillon.suivant = ...

Partie C

Une pile p, éventuellement vide, stocke des éléments entiers qu’on souhaite trier selon
le pseudo-tri dictatorial. A lissue du tri, on veut que cette pile soit modifiée et ne
contienne plus que des éléments triés.

11. Rappeler le principe du fonctionnement d’une pile.

12. Remettre dans l'ordre les lignes ci-dessous afin d’obtenir I'algorithme attendu,
en respectant une tabulation lorsque la ligne est a l'intérieur d’un bloc si ou

tant que.
— sipn’estpasvide :
e tant que p n’'est pas vide :
* tant que p2 n'est pas vide :

e on dépile p, on stocke I'élément obtenu dans la variable
dernier_conserveé et on 'empile dans p2 ;

e on crée une pile intermédiaire p2 vide ;

25-NSIPE4 Page : 13/14



— on dépile p et on stocke I'élément obtenu dans la variable
candidat;

— sicandidat est supérieure ou égal a
dernier_conservé :

— on dépile p2 et on empile I'élément obtenu dans p ;

e dernier_conservé prend la valeur de
candidat et 'empile dans p2

On suppose maintenant que l'on dispose d'une classe Pile implémentant une
structure de pile. L’appel help(Pile) entraine I'affichage suivant :

Help on class Pile in module _ main_ :

class Pile(builtins.object)
| Methods defined here:

__init__(sel?)

Initialize self. See help(type(self)) for accurate

signature.

__str__(self)
Return str(self).

depiler(self)

empiler(self, elt)

est _vide(selT)

13. Ecrire en Python la fonction tri_dictatorial_pile qui prend en paramétre
p une instance de Pile et modifie cette pile afin qu’elle ne conserve que des
eléments triés selon le pseudo-tri dictatorial.

25-NSIPE4 Page : 14 /14



