
25-NSIPE4 Page : 10 / 14

Exercice 3 (8 points)

Cet exercice porte sur l’algorithmique des tableaux, la gestion de bugs, les listes, les
piles et la programmation orientée objet.

Le but de cet exercice est d’implémenter un algorithme de pseudo-tri, appelé le tri
dictatorial.

L’exercice est constitué de trois parties indépendantes.

Pour chaque question, on peut considérer acquis les résultats et les fonctions
demandés dans les questions précédentes, même sans les avoir traitées.

Le pseudo-tri dictatorial d’une série d’entiers suit le principe suivant :

• s’il n’y a aucun ou un seul élément, la série est considérée comme triée et n’est
donc pas modifiée ;

• sinon :
– on conserve le premier élément de la série ;
– pour chaque élément de la série à partir du deuxième :

• si l’élément est plus petit que le dernier élément conservé alors on
l’élimine ;

• sinon on le conserve.

Par exemple, si on considère la série 2, 3, 1, 8 :

• on conserve le 2 qui est le premier élément ;
• le 3 n’est pas plus petit que le dernier conservé (qui est 2) donc on le conserve

;
• le 1 est plus petit que le dernier conservé (qui est 3) donc on l’élimine ;
• le 8 n’est pas plus petit que le dernier conservé (qui est toujours 3) donc on le

conserve.

La série triée obtenue après cet algorithme est donc 2, 3, 8.

Partie A

Dans cette partie, on implémente le tri dictatorial en utilisant le type list de Python
pour représenter une série d’entiers.

On souhaite coder une fonction tri_dictatorial qui :

• prend en paramètre une liste d’entiers serie de type list ;
• renvoie une nouvelle liste d’entiers obtenue en suivant l’algorithme présenté en

introduction, c’est-à-dire une liste triée, éventuellement vide, ne contenant que
les éléments de serie à conserver ;

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 11 / 14

• ne modifie pas serie.

Par exemple, si s = [5, 2, 6, 8, 3, 7], l’appel tri_dictatorial(s) devrait
renvoyer la liste [5, 6, 8] sans modifier s. On remarque que la liste obtenue est en
effet triée.

1. Donner le résultat que doit renvoyer l’appel : tri_dictatorial([31, 45,
41, 28, 37, 108, 127, 2, 124, 421]).

2. Expliquer pourquoi le tri dictatorial n’est pas un algorithme de tri.

Edgar a écrit le programme suivant, qui prétend implémenter le tri dictatorial :

1 def tri_dictatorial(serie):
2 serie_triee = [serie[0]]
3 for i in range(1, len(serie)):
4 if serie[i] >= serie[i - 1]:
5 serie_triee.append(serie[i])
6 return serie_triee

Edgar souhaite tester si sa fonction fait bien ce qu’elle est censée faire.

3. Edgar réalise l’appel tri_dictatorial([8, 2, 9, 6, 12]).

 Expliquer pas à pas comment la liste serie_triee se construit après cet
appel.

4. Edgar réalise maintenant l’appel tri_dictatorial([]) et obtient l’erreur
suivante :

 Traceback (most recent call last):
 File "tri_edgar.py", line 8, in <module>
 tri_dictatorial([])
 File "tri_edgar.py", line 2, in tri_dictatorial
 result = [serie[0]]
IndexError: list index out of range

 Expliquer précisément l’erreur obtenue et proposer une modification du code
d’Edgar afin que cet appel soit conforme à l’algorithme du tri dictatorial décrit en
introduction.

Dijkstra lors de la réception de son prix Turing en 1972, a notamment déclaré :

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.”

ce que l’on peut traduire par :

“Tester les programmes peut être un moyen très efficace d’y trouver des bugs, mais
c’est un moyen désespérément inadéquat pour prouver leur absence.”

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 12 / 14

5. Expliquer pourquoi des tests ne peuvent pas prouver de façon certaine
l’absence de bugs d’un programme en général.

Edgar décide de procéder à un test supplémentaire et réalise l’appel
tri_dictatorial([8, 2, 3, 5, 12]). La fonction renvoie alors [8, 3, 5,
12] qui n’est pas une liste triée.

6. Expliquer la cause du problème et proposer une modification du code d’Edgar
afin de la corriger.

Partie B

Dans cette partie, on implémente le tri dictatorial sur des listes chaînées. Cette fois-ci
on va modifier la liste chaînée initiale au lieu de construire une nouvelle liste.

On dispose d’une classe Maillon :

1 class Maillon:
2 def __init__(self, val, suiv):
3 self.valeur = val
4 self.suivant = suiv

L’attribut suivant doit correspondre à un Maillon (le suivant de self), ou à None
si self est le dernier.

On dispose également d’une classe Liste qui implémente une liste chaînée avec
pour unique attribut tete qui est le maillon de tête de la liste chaînée, une instance de
Maillon :

class Liste:
 def __init__(self, tete):
 self.tete = tete

On peut représenter graphiquement une liste chaînée de la manière suivante, avec la
barre à hachure symbolisant la valeur None :

Figure 1. Liste chaînée constituée de trois maillons m1, m0 et m8.

7. Donner des instructions permettant de construire les trois maillons m1, m0 et m8
et la liste chaînée représentés ci-dessus. On nommera la liste chaînée
ma_liste.

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 13 / 14

8. Indiquer ce que renvoie chacune des instructions ci-dessous :

 m1.valeur == 1
m1.suivant.valeur == 8
m1.suivant.suivant == None
m1.suivant.suivant.suivant == None

9. Donner une instruction permettant de transformer ma_liste en la liste
chaînée représentée ci-dessous :

On souhaite à présent une fonction tri_dictatorial_chaine qui prend en
paramètre une instance de liste chaînée chaine et qui modifie cette liste chaînée
démarrant en suivant l’algorithme du pseudo-tri dictatorial. La fonction ne renvoie rien.

10. Recopier et compléter la fonction tri_dictatorial_chaine ci-dessous.

 def tri_dictatorial_chaine(chaine):
 maillon = chaine.tete
 while maillon.suivant ... :
 if maillon.valeur ...
 maillon = ...
 else:
 maillon.suivant = ...

Partie C

Une pile p, éventuellement vide, stocke des éléments entiers qu’on souhaite trier selon
le pseudo-tri dictatorial. À l’issue du tri, on veut que cette pile soit modifiée et ne
contienne plus que des éléments triés.

11. Rappeler le principe du fonctionnement d’une pile.

12. Remettre dans l’ordre les lignes ci-dessous afin d’obtenir l’algorithme attendu,
en respectant une tabulation lorsque la ligne est à l’intérieur d’un bloc si ou
tant que.

– si p n’est pas vide :

• tant que p n’est pas vide :

• tant que p2 n’est pas vide :

• on dépile p, on stocke l’élément obtenu dans la variable
dernier_conservé et on l’empile dans p2 ;

• on crée une pile intermédiaire p2 vide ;

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 14 / 14

– on dépile p et on stocke l’élément obtenu dans la variable
candidat ;

– si candidat est supérieure ou égal à
dernier_conservé :

– on dépile p2 et on empile l’élément obtenu dans p ;

• dernier_conservé prend la valeur de
candidat et l’empile dans p2

On suppose maintenant que l’on dispose d’une classe Pile implémentant une
structure de pile. L’appel help(Pile) entraîne l’affichage suivant :

Help on class Pile in module __main__:

class Pile(builtins.object)
 | Methods defined here:
 |
 | __init__(self)
 | Initialize self. See help(type(self)) for accurate
signature.
 |
 | __str__(self)
 | Return str(self).
 |
 | depiler(self)
 |
 | empiler(self, elt)
 |
 | est_vide(self)

13. Écrire en Python la fonction tri_dictatorial_pile qui prend en paramètre
p une instance de Pile et modifie cette pile afin qu’elle ne conserve que des
éléments triés selon le pseudo-tri dictatorial.

