
25-NSIJ1AS1 Page : 1 / 21

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

JOUR 1

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 21 pages numérotées de 1/21 à 21/21.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ1AS1 Page : 2 / 21

Exercice 1 (6 points)

Cet exercice porte sur les bases de données et les requêtes SQL, les arbres binaires
et les algorithmes sur les arbres binaires.

Partie A

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT , FROM , WHERE (avec
les opérateurs logiques AND , OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE ,
INSERT , DELETE.

Une exoplanète est une planète située hors du système solaire. La plupart des
exoplanètes découvertes à ce jour orbitent autour d’une unique étoile.

Une étoile est repérée précisément dans le ciel par son ascension droite et sa
déclinaison (voir Figure 1). La direction de coordonnées (0, 0) est une direction fixe
du ciel servant d’origine de ce système de coordonnées.

Figure 1. Coordonnées d’une étoile (adaptée depuis
https://commons.wikimedia.org/wiki/File:Coordonnees_equatoriales.svg)

On considère dans cet exercice deux relations décrivant des étoiles et les exoplanètes
orbitant autour d’elles :

• la relation Etoiles contient les informations décrivant des étoiles :

– id_etoile : l’identifiant unique de l’étoile (nombre entier) ;

– nom : le nom de l’étoile (chaîne de caractères) ;

– ascension : l’ascension droite de l’étoile en degré (nombre réel) ;

– declinaison : la déclinaison de l’étoile en degré (nombre réel).

25-NSIJ1AS1 Page : 3 / 21

• la relation Exoplanetes contient les informations décrivant des exoplanètes :

– id_exoplanete : l’identifiant unique de l’exoplanète (nombre entier) ;

– masse : la masse de l’exoplanète, exprimée sous la forme d’une fraction
de la masse de la planète Jupiter (nombre réel) ;

– rayon : le rayon de l’exoplanète, exprimée sous la forme d’une fraction
du rayon de la planète Jupiter (nombre réel) ;

– id_etoile : l’identifiant de l’étoile autour de laquelle orbite l’exoplanète
(nombre entier).

Une exoplanète dont l’attribut masse est égal à 6.84 a une masse 6,84 fois plus
grande que celle de la planète Jupiter.

On fournit ci-dessous des extraits de ces deux tables :

Etoiles

id_etoile nom ascension declinaison

1 109 Psc 26.23 20.08

2 beta Pic 86.82 -51.07

3 K2-21 340.30 -14.49

4 Kepler-11 297.12 41.91

Exoplanetes

id_exoplanete masse rayon id_etoile

1 6.84 1.15 1

2 11.90 1.65 2

3 8.89 1.20 2

4 0.01 0.16 3

5 0.02 0.22 3

6 0.01 0.16 4

7 0.01 0.26 4

L’attribut id_exoplanete est la clé primaire de la relation Exoplanetes. L’attribut
id_etoile est la clé primaire de la relation Etoiles.

1. Expliquer pourquoi l’attribut masse de la relation Exoplanetes ne peut pas
servir de clé primaire de cette relation.

25-NSIJ1AS1 Page : 4 / 21

2. Donner le nom de l’attribut pouvant être utilisé comme clé étrangère dans la
relation Exoplanetes. Expliquer son rôle.

3. Donner le résultat de la requête SQL suivante :

 SELECT masse, rayon
FROM Exoplanetes
WHERE id_exoplanete = 4;

4. Écrire une requête SQL permettant d’obtenir l’identifiant et le nom des étoiles
dont l’ascension droite est supérieure ou égale à 100 degrés.

On souhaite insérer une nouvelle exoplanète de rayon égal à 0,37 fois celui de Jupiter
et pesant 0,03 fois la masse de Jupiter. Cette exoplanète orbite autour de l’étoile
Kepler-11 dont l’identifiant est 4. On pourra attribuer à cette nouvelle exoplanète
l’identifiant 9 qui n’apparaît pas dans la relation Exoplanetes.

5. Écrire une requête SQL permettant d’insérer cette nouvelle exoplanète dans la
base de données.

6. Écrire une requête SQL permettant d’obtenir les rayons des exoplanètes
orbitant autour de l’étoile nommée Kepler-11, dont l’identifiant est supposé non
connu.

Partie B

On souhaite désormais écrire une application Python permettant de classer et de
retrouver efficacement les étoiles selon leur position dans le ciel.

On rappelle qu’une étoile est repérée par son ascension droite et sa déclinaison. Par
souci de simplicité, on considère désormais que deux étoiles ont toujours des
coordonnées entières et distinctes. On représente en Python les coordonnées d’une
étoile par un tuple d’entiers (ascension, declinaison).

Dans la suite, on considère les étoiles dont les coordonnées sont contenues dans la
liste de tuples etoiles définie par etoiles = [(29, 21), (17, 14), (10,
30), (35, 13), (30, 63), (15, 20)].

On cherche à construire un arbre binaire de recherche à partir des coordonnées
présentes dans la liste etoiles afin d’accélérer les opérations de traitement sur
celles-ci. Pour cela :

• on commence par trier la liste etoiles par ordre croissant, afin que l’arbre
résultant soit de hauteur minimale ;

• pour construire l’arbre binaire de recherche à partir des éléments de la liste
etoiles compris entre les indices debut (inclu) et fin (exclu) :

– la racine de l’arbre est l’élément d’indice milieu définit par

 milieu = (debut + fin)//2 ;

25-NSIJ1AS1 Page : 5 / 21

– on construit récursivement le sous arbre gauche à l’aide des éléments
de la liste etoiles compris entre les indices debut (inclu) et milieu
(exclu) ;

– on construit récursivement le sous arbre droit à l’aide des éléments de la
liste etoiles compris entre les indices milieu + 1 (inclu) et fin
(exclu).

Pour implémenter cet algorithme, on représente en Python les arbres binaires non
vides à l’aide de tuples de trois éléments (sag, position, sad) dans lesquels :

- position est la valeur de la racine. Cette valeur est le couple de coordonnées
permettant de repérer l’étoile ;

- sag et sad sont respectivement les sous-arbres gauche et droit de l’arbre.

L’arbre vide est quant à lui représenté par None.

On rappelle que l’on peut comparer des tuples en Python à l’aide de l’opérateur < : on
compare tout d’abord les valeurs à l’indice 0 de chaque couple puis, en cas d’égalité,
celles à l’indice 1.

Ainsi, les expressions (1, 4) < (2, 3) et (1, 4) < (1, 6) s’évaluent toutes
les deux à True.

La fonction sorted de Python prend en argument une liste et renvoie une nouvelle
liste contenant les mêmes valeurs triées dans l’ordre croissant à l’aide de l’opérateur <.

7. Donner la liste renvoyée par l’instruction sorted(etoiles).

8. Dessiner l’arbre binaire représenté par le tuple (((None, (1, 34),
None), (2, 35), None), (11, 36), (None, (17, 30), None)).

L’arbre construit à partir de la liste etoiles a donc pour représentation Python :

(((None, (10, 30), None), (15, 20), (None, (17, 14), None)),
(29, 21), ((None, (30, 63), None), (35, 13), None))

Il est représenté sur la Figure 2 ci-après.

25-NSIJ1AS1 Page : 6 / 21

Figure 2. Arbre associé à la liste etoiles

9. Dessiner l’arbre binaire de recherche obtenu à partir de la liste :

 [(1, 33), (2, 30), (2, 33), (4, 30), (8, 39)]

10. Recopier et compléter les lignes 3, 7, 8, 9 et 11 du code de la fonction
construction qui prend en paramètres une liste etoiles supposée triée par
ordre croissant, ainsi que deux entiers debut et fin. Cette fonction renverra
l’arbre binaire de recherche associé aux coordonnées présentes entre les
indices debut (inclus) et fin (exclu) de la liste etoiles.

 Par exemple, l’appel initial permettant de construire l’arbre associé à la liste
etoiles est construction(etoiles, 0, 6).

 L’indice du milieu est 3, le sous-arbre gauche est renvoyé par l’appel
construction(etoiles, 0, 3) et le sous-arbre droit par
construction(etoiles, 4, 6).

 1 def construction(etoiles, debut, fin):
 2 if debut == fin:
 3 return ...
 4
 5 milieu = (debut + fin) // 2
 6
 7 sag = construction(...)
 8 racine = ...
 9 sad = ...
10
11 return ...

11. Écrire le code de la fonction en_arbre qui prend en paramètre une liste
etoiles de couples de coordonnées non triés et renvoie l’arbre construit selon
la démarche décrite plus haut. On pourra utiliser la fonction construction de
la question précédente.

On souhaite désormais écrire une fonction contient qui prend en paramètres un
arbre binaire de recherche arbre tel que renvoyé par la fonction construction ainsi

25-NSIJ1AS1 Page : 7 / 21

qu’un tuple d’entiers position représentant les coordonnées d’une étoile. Cette
fonction renvoie True si l’arbre contient cette étoile, False dans le cas contraire.

12. Recopier et compléter les lignes 3, 8, 9, 10 et 12 du code de la fonction
contient.

 1 def contient(arbre, position):
 2 if arbre is None:
 3 return ...
 4
 5 sag, valeur, sad = arbre
 6
 7 if position < valeur:
 8 return contient(..., ...)
 9 elif ...:
10 return ...
11 else:
12 return ...

25-NSIJ1AS1 Page : 8 / 21

Exercice 2 (6 points)

Cet exercice porte sur les systèmes d’exploitation, les processus, les structures de
données linéaires, la programmation en Python et en particulier la programmation
orientée objet.

Partie A

“Le système d’exploitation est chargé d’allouer les ressources (mémoires, temps
processeur, entrées/sorties) nécessaires aux processus et d’assurer que le
fonctionnement d’un processus n’interfère pas avec celui des autres.”

Source : Wikipédia, extrait de l’article consacré aux processus.

1. Expliquer succinctement, dans ce contexte, ce qu’est un processus.

On rappelle qu’un processus peut-être soit élu, soit bloqué, soit prêt.

2. Recopier et compléter le schéma ci-dessous avec les termes suivants :

 élu, bloqué, prêt, élection, blocage, déblocage.

 Figure 1. Schéma processus

On considère qu’un monoprocesseur est utilisé. Le système d’exploitation tel un chef
d’orchestre, gère l’accès au processeur selon la règle du « premier arrivé, premier servi
». À chaque processus, on associe un instant d’arrivée (instant où le processus
demande l’accès au processeur pour la première fois) et une durée d’exécution (durée
d’accès au processeur nécessaire pour que le processus s’exécute entièrement).

3. Donner la structure de données la plus adaptée pour gérer l’accès des
processus au processeur selon la règle du « premier arrivé, premier servi ».

25-NSIJ1AS1 Page : 9 / 21

Le tableau ci-dessous présente les instants d’arrivées et les durées d’exécution de
quatre processus :

4 processus

Processus instant d’arrivée durée d’exécution

P1 0 4

P2 2 2

P3 3 4

P4 4 2

4. Recopier et compléter, à l’aide du tableau, le schéma ci-dessous avec les
processus P1 à P4 en utilisant la règle du « premier arrivé premier servi ».

 Figure 2. Utilisation du processeur

5. Déterminer le temps qu’a dû attendre le processus P4 avant de pouvoir accéder
au processeur.

Partie B

6. Expliquer en quoi consiste la notion d’interblocage.

Afin d’éviter une situation d’interblocage, une solution consiste à attribuer à chaque
processus un numéro de priorité.

On souhaite modéliser ce mode de fonctionnement mettant en jeu des numéros de
priorité :

- en utilisant une liste de tuples, tuple constitué d’un entier représentant le
numéro de priorité ainsi que d’une chaîne de caractères représentant le nom du
processus ;

- le processus prioritaire est celui dont le numéro de priorité est le plus petit.

Il est donc important que la liste soit et reste triée dans l’ordre décroissant des numéros
de priorités.

Exemple :

>>> exemple = [(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1,
'Vivaldi')]
>>> # La liste est triée, le processus le plus prioritaire est
'Vivaldi'

25-NSIJ1AS1 Page : 10 / 21

On considère la classe Priority_Queue dont l’attribut liste_priorite est une
liste de tuples, constitués d’un numéro de priorité et d’un nom de processus comme
dans l’exemple ci-avant.

 1 class Priority_Queue:
 2 def __init__(self):
 3 self.liste_priorite = []
 4
 5 def est_vide(self):
 6 """Renvoie Vrai si la liste_priorite
 7 est vide, Faux sinon
 8 """
 9 return self.liste_priorite == []
10
11 def sortir(self):
12 """Retire et renvoie le dernier élément de
13 liste_priorite"""
14 assert ...
15 ...
16
17 def index_insertion_element(self, element):
18 """Renvoie la position/index d'insertion
19 d'element dans liste_priorite triée
20 par ordre décroissant
21 de numéro priorité
22 """
23 if self.est_vide():
24 ...
25 else:
26 debut = 0
27 fin = len(self.liste_priorite) - 1
28 milieu = (debut + fin) // 2
29 while ... <= fin:
30 if self.liste_priorite[milieu][0] > ...:
31 debut = ...
32 elif self.liste_priorite[milieu][0] < ...:
33 fin = ...
34 else:
35 # cas d'égalité de priorité
36 ... milieu
37 milieu = ...
38 return milieu + 1
39
40 def inserer(self, element):
41 """Modifie liste_priorite en insérant
42 element à la position adéquate
43 dans l'ordre décroissant de
44 numéro de priorité"""

7. Écrire l’instruction permettant d’instancier navigateurs un objet de la classe
Priority_Queue.

25-NSIJ1AS1 Page : 11 / 21

On rappelle que la méthode pop(), appelée sans argument, supprime et renvoie le
dernier élément d’une liste.

>>> fruits = ['pomme', 'pomme', 'raisin', 'orange', 'poire']
>>> fruits.pop()
'poire'
>>> fruits
['pomme', 'pomme', 'raisin', 'orange']

8. Recopier et compléter les lignes 14 et 15 du code de la méthode sortir qui
après avoir vérifié, sous la forme d’une précondition, que l’objet n’est pas vide,
retire et renvoie le dernier élément de liste_priorite.

Pour maintenir la liste de priorités triée dans l’ordre décroissant des numéros de
priorités, il est indispensable de savoir à quelle position on doit insérer un nouvel
élément en fonction de sa priorité.

Cette question ne porte que sur la détermination de la position à laquelle devrait être
inséré un élément et cela sans effectuer d’insertion.

On considère, par exemple, que navigateurs.liste_priorite contient

[(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1, 'Vivaldi')].

Si on souhaite insérer :

- l’élément (12, 'Opera') on devrait l’insérer au tout début, à la position 0 de
navigateurs.liste_priorite ;

- l’élément (6, 'Brave') on devrait l’insérer à la position 2 juste avant (5,
'Chrome') ;

- l’élément (0, 'Safari') on devrait l’insérer à la position 4 c’est-à-dire
l’ajouter à la fin de la liste.

Pour déterminer la position d’insertion d’un nouvel élément on adapte la méthode dite
de recherche dichotomique dans une liste triée dans l’ordre décroissant des numéros
de priorités (voir la méthode index_insertion_element).

On compare la priorité du tuple element à la priorité du tuple se situant au milieu de
la liste_priorite.

- si elle est strictement supérieure on recommence dans la moitié gauche de
liste_priorite ;

- si elle est strictement inférieure on recommence dans la moitié droite de
liste_priorite ;

- si elle est égale la position devra être le milieu.

9. Donner le coût en temps de la recherche dichotomique.

25-NSIJ1AS1 Page : 12 / 21

10. Recopier et compléter les huit lignes 24, 29, 30, 31, 32, 33, 36, et 37 du code
de la méthode index_insertion_element qui prend en paramètre un
élément element et qui renvoie la position d’insertion de l’élément
element en utilisant une méthode dichotomique.

11. Écrire, sans utiliser la méthode insert des listes Python, une méthode
inserer qui prend en paramètre un élément element, et modifie
liste_priorite en insérant l’élément element à la position adéquate de
la liste triée par ordre décroissant des numéros de priorités.

 Exemples :

 >>> navigateurs.liste_priorite
[(10, 'Edge'), (8, 'Firefox'), (5, 'Chrome'), (1,
'Vivaldi')]
>>> navigateurs.inserer((16, 'Brave'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'), (5,
'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((6, 'Safari'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'),(6,
'Safari'), (5, 'Chrome'), (1, 'Vivaldi')]
>>> navigateurs.inserer((0, 'Lynx'))
>>> navigateurs.liste_priorite
[(16, 'Brave'), (10, 'Edge'), (8, 'Firefox'),(6,
'Safari'), (5, 'Chrome'), (1, 'Vivaldi'), (0, 'Lynx')]

25-NSIJ1AS1 Page : 13 / 21

Exercice 3 (8 points)

Cet exercice porte principalement sur les systèmes d’exploitation, les réseaux et la
programmation de base en Python.

Une association de jardinage anime un réseau d’échange de plantes.

Partie A

Les échanges de plantes sont traités à travers un système de gestion de fichiers dans
un espace de stockage partagé.

Le répertoire association est positionné à la racine du système de fichiers.

Un répertoire annonces contient des fichiers au format HTML décrivant l’échange
souhaité. Le fichier contient notamment le nom de la personne qui soumet l’annonce
et décrit la plante proposée ainsi que le type de plante souhaitée en échange. Chaque
adhérent dispose d’un répertoire à son nom à l’intérieur du répertoire adherents.

La figure ci-dessous donne un extrait de l’arborescence :

|---+ association
 |---+ adherents
 | |---+ abi
 | | |--tulipe_chen.html
 | | |--muguet_abi.html
 | |
 | |---+ bachir
 | | |--reseda_dana.html
 | |
 | | [...]
 |
 |---+ annonces
 | |--rosier_abi.html
 | |--pivoine_bachir.html

L’utilisateur manipule le système de fichiers à travers un terminal (en ligne de
commande). Il travaille sur un système de type Unix.

1. Décrire le résultat de la commande ls /association saisie dans un terminal.

2. Le répertoire courant dans le terminal est /association. Parmi les
commandes systèmes suivantes, identifier celle qui permet de définir
annonces comme répertoire courant.

25-NSIJ1AS1 Page : 14 / 21

– cd /annonces

– cd ../annonces

– cd annonces
– cd association/annonces

Les quatre premières lignes de la documentation obtenue avec la commande cp --
help sont les suivantes :

Utilisation : cp [OPTION]... [-T] SOURCE DEST
 ou : cp [OPTION]... SOURCE... RÉPERTOIRE
 ou : cp [OPTION]... -t RÉPERTOIRE SOURCE...
Copier la SOURCE vers DEST ou plusieurs SOURCEs vers
RÉPERTOIRE.

Les quatre premières lignes du résultat de mv --help sont :

Utilisation : mv [OPTION]... [-T] SOURCE DEST
 ou : mv [OPTION]... SOURCE... RÉPERTOIRE
 ou : mv [OPTION]... -t RÉPERTOIRE SOURCE...
Renommer SOURCE en DEST, ou déplacer le ou les SOURCEs vers
RÉPERTOIRE.

3. Expliquer la différence entre les commandes suivantes en précisant le nombre
d’exemplaires du fichier rosier_abi.html à l’issue de chacune d’elles.

– cp rosier_abi.html ../adherents/abi/

– mv rosier_abi.html ../adherents/abi/

Abi propose une annonce à laquelle Bachir voudra répondre. L’annonce d’Abi figure
dans la page rosier_abi.html qui s’affiche ainsi dans un navigateur :

Figure 1. rosier_abi.html

Bachir devra répondre à l’annonce dans le code HTML de la page
rosier_abi.html ci-dessous.

25-NSIJ1AS1 Page : 15 / 21

<html><body>
<h1>Échange un rosier bicolore "Léo Ferré"</h1>

<h2>Proposition de troc</h2>
<table>
 <tr><td>Nom :</td> <td>Abi</td></tr>
 <tr><td>Plante :</td><td>Rosier Léo Ferré</td></tr>
 <tr><td>Lien : </td><td>Photo du
rosier</td></tr>
</table>

<h2>En échange de</h2>
<table>
 <tr><td>Nom :</td><td></td></tr>
 <tr><td>Plante :</td><td>Orchidée</td></tr>
 <tr><td>Lien : </td><td></td></tr>
</table>
</body></html>

Pour répondre à l’annonce Bachir doit écrire au bon endroit dans le code source de la
page HTML les informations suivantes :

- Nom : Bachir
- Plante : Orchidée noire Cymbidium
- Lien : monsiteperso.fr/bachir/orchidee.jpg

4. Recopier et compléter la section de code que Bachir doit modifier pour répondre
à l’annonce.

Lorsqu’une personne veut répondre à l’annonce, elle procède selon l’algorithme
suivant :

- Étape 1 : elle ouvre la page HTML dans un éditeur ;
- Étape 2 : elle ajoute les informations nécessaires à l’échange ;
- Étape 3 : elle enregistre les modifications ;
- Étape 4 : elle fait une copie de l’annonce complétée vers son répertoire

personnel ;
- Étape 5 : l’exemplaire original modifié est déplacé vers le répertoire personnel

de la personne qui a proposé l’annonce.

À l’issue de cet algorithme, l’annonce a disparu du répertoire annonces.

25-NSIJ1AS1 Page : 16 / 21

5. Bachir et Chen veulent tous les deux répondre à l’annonce. Ils exécutent chacun
l’algorithme sensiblement à la même heure.

 En détaillant étape par étape un exemple, expliquer pourquoi cet algorithme se
comporte mal avec la mise en concurrence des deux propositions d’échange.

6. Proposer un nouvel algorithme qui empêche le conflit précédent.

Partie B

Les membres de l’association s’organisent en réseau afin de s’échanger les plantes
de la main à la main.

Certains membres de l’association se rencontrent très régulièrement. Dans ce cas, on
dira qu’ils sont amis. Quand un membre de l’association doit faire parvenir une plante,
il la confie à un ami qui lui-même la confiera à quelqu’un d’autre, à l’image des routeurs
au cœur d’Internet qui se transmettent les messages à router.

Pour acheminer au mieux les plantes, l’association s’inspire du protocole RIP. Ce
protocole de routage s’adapte aux modifications du réseau.

On rappelle que le protocole RIP vise à minimiser le nombre de sauts sur les chemins
de routage construits. Dans le contexte de l’exercice, il s’agira de minimiser le nombre
d’échanges entre adhérents pour faire parvenir la plante à son destinataire.

Les membres sont donc amenés à servir d’intermédiaire. Dans ce cadre, chaque
membre construit l’équivalent d’une table de routage.

La table de routage d’Abi est la suivante :

Table de routage d’Abi

Destinataire Intermédiaire Distance

Bachir Bachir 1

Chen Bachir 2

Dana Dana 1

Edie Dana 2

D’après cette table, Abi est amie avec Bachir. Si Abi doit faire parvenir une plante à
Chen, elle doit la confier à Bachir car il est un ami de Chen. La distance correspond
au nombre de rencontres nécessaires pour faire parvenir la plante.

Exemple : Dans le tableau, on lit que la distance entre Abi et Chen vaut 2 car si Abi
veut faire parvenir un rosier à Chen, il faut que Abi confie le rosier à Bachir puis que
Bachir le donne à Chen. Edie n’est pas un ami d’Abi, son nom ne peut pas apparaitre
dans la colonne « Intermédiaire ».

25-NSIJ1AS1 Page : 17 / 21

7. Reproduire le graphe ci-dessous puis ajouter une arête pour que le graphe
devienne cohérent avec la table de routage d’Abi.

 Figure 2. Relations entre les membres de l’association

Frida rejoint l’association. Elle est amie avec Abi. À son arrivée dans l’association,
Frida ne connaît personne d’autre. Pour construire sa table de routage, Frida exploite
les informations de la table de routage d’Abi.

8. Reproduire et compléter la table de routage de Frida.

Table de routage de Frida

Destinataire Intermédiaire Distance

Abi Abi 1

Bachir

Chen

Dana

Edie

Abi met également sa table de routage à jour pour y inclure Frida, puis elle va
communiquer sa table de routage à tous ses autres amis (Bachir et Dana). Par la suite,
Bachir et Dana, à leur tour, vont communiquer leur table de routage à leurs amis, et
ainsi de suite.

9. Décrire les modifications que doivent faire Abi, Bachir, Chen, Dana et Edie dans
leur table de routage respective suite à l’arrivée de Frida.

Après quelques semaines les relations ont évolué, certains liens se sont rompus et un
nouvel adhérent est arrivé. Abi et Frida échangent les informations de leur table de
routage respective afin de les actualiser.

25-NSIJ1AS1 Page : 18 / 21

Table de routage d’Abi

Destinataire Intermédiaire Distance

Bachir Bachir 1

Chen Bachir 3

Dana Dana 1

Edie Dana 2

Frida Frida 1

Guy Dana 3

Hakim Hakim 1

Table de routage de Frida

Destinataire Intermédiaire Distance

Abi Abi 1

Bachir Abi 2

Chen Chen 1

Dana Abi 2

Edie Guy 2

Guy Guy 1

10. Décrire les modifications que chacune d’elles doit apporter à sa table de routage
afin de maintenir les routes les plus courtes pour chaque destinataire.

Partie C

Dans cette partie, les tables de routage sont structurées sous forme de dictionnaires.
Les clés du dictionnaire sont les destinataires. La valeur associée à un destinataire est
le tuple (intermediaire, distance).

La table de routage d’Abi est la suivante :

1 table_abi = {'Abi' : ('Abi' , 0),
2 'Bachir' : ('Bachir' , 1),

25-NSIJ1AS1 Page : 19 / 21

3 'Chen' : ('Bachir' , 3),
4 'Dana' : ('Dana' , 1),
5 'Edie' : ('Dana' , 2),
6 'Guy' : ('Dana' , 3),
7 'Hakim' : ('Hakim' , 1)}

La table de routage d’Hakim est la suivante :

 1 table_hakim = {'Ines' : ('Janus' , 2),
2 'Janus' : ('Janus' , 1)}

11. En vous appuyant sur la table de routage d’Hakim, répondre par vrai ou faux à
chacune des affirmations suivantes :

– Hakim et Janus sont amis ;
– Hakim et Ines sont amis ;
– Janus et Ines sont amis.

La fonction amis prend en argument une table de routage d’une personne et elle
renvoie la liste de ses amis, c’est-à-dire la liste des intermédiaires, sans doublon. La
fonction a été correctement programmée, mais par erreur les lignes de codes ont été
mélangées (elles ont été triées dans l’ordre alphanumérique croissant). Les espaces
en début de ligne ont été conservés et ils sont donc corrects, seul l’ordre des lignes a
été modifié.

1 liste.append(intermediaire)
2 if intermediaire not in liste:
3 """renvoie la liste des intermédiaires de la table de
routage, sans doublon"""
4 for (intermediaire, distante) in table.values():
5 liste = []
6 return liste
7 def amis(table):

12. Remettre les lignes de codes dans le bon ordre.

Dans le but d’automatiser la mise à jour des tables de routages, il est proposé le
programme suivant :

 1 def maj(ma_table, ami, table_ami):
 2 """mise à jour de ma_table (dict) avec les
 3 informations de table_ami (dict).
 4 ami est du type str."""
 5
 6 if ami not in ma_table.keys():
 7 ma_table[ami] = (... , ...)
 8

25-NSIJ1AS1 Page : 20 / 21

 9 for adh in table_ami.keys():
10 (intermediaire, distance) = table_ami[adh]
11 if adh not in ma_table.keys():
12 ma_table[adh] = (intermediaire, distance + 1)
13 if ma_table[adh][...] > distance + 1:
14 ma_table[adh] = (ami, ...)
15
16 for adh in ma_table.keys():
17 (intermediaire, distance) = ma_table[adh]
18 if adh not in table_ami.keys() and adh != ami and
intermediaire == ami:
19 ma_table[adh] = (None, float('inf'))
20
21 return ma_table

La fonction maj prends en paramètres :

- un dictionnaire ma_table représentant une table de routage ;

- une chaîne de caractères ami désignant le nom de l’ami ;

- un dictionnaire table_ami représentant la table de routage de l’ami. C’est
de cette table de routage que sont extraites les informations utiles.

Cette fonction met à jour la table de routage ma_table.

13. Expliquer le test de la ligne 6 du code de la fonction maj.

14. Recopier et compléter la ligne 7 du code de la fonction maj.

15. La boucle de la ligne 9 parcourt les clés de table_ami pour mettre à jour les
informations de ma_table. Recopier et compléter les lignes 13 et 14 du code
de la fonction maj.

La fonction nettoie, dont le code est donné ci-après, prend en paramètre un
dictionnaire table représentant une table de routage. Elle a pour objectif de
supprimer les entrées du dictionnaire des membres devenus injoignables (suite à la
mise-à-jour de la table dans la fonction maj aux lignes 16 à 19).

1 def nettoie(table):
2 """Supprime toute les noms qui ne sont pas joignables"""
3 for (adh, ligne) in table.items():
4 if ligne[0] == None:
5 del table[adh]

25-NSIJ1AS1 Page : 21 / 21

Il est impossible, avec le langage Python, de supprimer des entrées dans un
dictionnaire à l’intérieur d’une boucle qui le parcourt. C’est la raison pour laquelle, à
l’exécution de cette fonction avec une certaine table, on obtient l’erreur suivante :

Traceback [...]line 1, in nettoie
 for (adh, ligne) in table.items():
RuntimeError: dictionary changed size during iteration

16. Proposer une version corrigée de la fonction nettoie qui évite le
déclenchement de l’erreur décrite.

