BACCALAUREAT GENERAL

EPREUVE D’ENSEIGNEMENT DE SPECIALITE

SESSION 2025

NUMERIQUE ET SCIENCES INFORMATIQUES

JOUR 1

Durée de I'épreuve : 3 heures 30
L'usage de la calculatrice n’est pas autoriseé.

Dés que ce sujet vous est remis, assurez-vous qu'il est complet.

Ce sujet comporte 21 pages numérotées de 1/21 a 21/21.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSI1J1AS1 Page:1/21

Exercice 1 (6 points)

Cet exercice porte sur les bases de données et les requétes SQL, les arbres binaires
et les algorithmes sur les arbres binaires.

Partie A

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

* construire des requétes d’interrogation a I'aide de SELECT , FROM , WHERE (avec
les opérateurs logiqgues AND , OR), JOIN ... ON;

» construire des requétes d’insertion et de mise a jour a l'aide de UPDATE ,
INSERT , DELETE.

Une exoplanéte est une planéte située hors du systéme solaire. La plupart des
exoplanétes découvertes a ce jour orbitent autour d’'une unique étoile.

Une étoile est repérée précisément dans le ciel par son ascension droite et sa
déclinaison (voir Figure 1). La direction de coordonnées (0, 0) est une direction fixe
du ciel servant d’origine de ce systéme de coordonnées.

Etoile

Déclinaison

Ascension droite

Figure 1. Coordonnées d’une étoile (adaptée depuis
https://commons.wikimedia.org/wiki/File:Coordonnees_equatoriales.svg)

On considére dans cet exercice deux relations décrivant des étoiles et les exoplanétes
orbitant autour d’elles :
» larelation Etoi les contient les informations décrivant des étoiles :
— id_etoi le : l'identifiant unique de I'étoile (nombre entier) ;
— nom: le nom de I'étoile (chaine de caracteres) ;
— ascension : I'ascension droite de I'étoile en degré (nombre réel) ;

— declinaison : la déclinaison de I'étoile en degré (nombre réel).

25-NSI1J1AS1 Page:2/21

» larelation Exoplanetes contient les informations décrivant des exoplanetes :
— i1d_exoplanete : I'identifiant unique de I'exoplanete (hombre entier) ;

— masse : la masse de I'exoplanete, exprimée sous la forme d’une fraction
de la masse de la planete Jupiter (nombre réel) ;

— rayon : le rayon de I'exoplanete, exprimée sous la forme d’une fraction
du rayon de la planéte Jupiter (hnombre réel) ;

— 1d_etoile: lidentifiant de I'étoile autour de laquelle orbite I'exoplanéte
(nombre entier).

Une exoplanéte dont l'attribut masse est égal a 6.84 a une masse 6,84 fois plus
grande que celle de la planete Jupiter.

On fournit ci-dessous des extraits de ces deux tables :

Etoiles
id_etoile nom ascension declinaison
1 109 Psc 26.23 20.08
2 beta Pic 86.82 -51.07
3 K2-21 340.30 -14.49
4 Kepler-11 297.12 41.91
Exoplanetes
id_exoplanete masse rayon id_etoile
1 6.84 1.15 1
2 11.90 1.65 2
3 8.89 1.20 2
4 0.01 0.16 3
5 0.02 0.22 3
6 0.01 0.16 4
7 0.01 0.26 4

L'attribut 1d_exoplanete est la clé primaire de la relation Exoplanetes. L'attribut

id_etoile est la clé primaire de la relation Etoi les.

1. Expliquer pourquoi l'attribut masse de la relation Exoplanetes ne peut pas
servir de clé primaire de cette relation.

25-NSI1J1AS1

Page:3/21

2. Donner le nom de l'attribut pouvant étre utilisé comme clé étrangere dans la
relation Exoplanetes. Expliquer son réle.

3. Donner le résultat de la requéte SQL suivante :

SELECT masse, rayon
FROM Exoplanetes
WHERE 1d_exoplanete = 4;

4. Ecrire une requéte SQL permettant d’obtenir I'identifiant et le nom des étoiles
dont I'ascension droite est supérieure ou égale a 100 degrés.

On souhaite insérer une nouvelle exoplanéte de rayon égal a 0,37 fois celui de Jupiter
et pesant 0,03 fois la masse de Jupiter. Cette exoplanete orbite autour de I'étoile
Kepler-11 dont l'identifiant est 4. On pourra attribuer a cette nouvelle exoplanete
l'identifiant 9 qui n'apparait pas dans la relation Exoplanetes.

5. Ecrire une requéte SQL permettant d'insérer cette nouvelle exoplanéte dans la
base de données.

6. Ecrire une requéte SQL permettant d’obtenir les rayons des exoplanétes
orbitant autour de I'étoile nommée Kepler-11, dont l'identifiant est supposé non
connu.

Partie B

On souhaite désormais écrire une application Python permettant de classer et de
retrouver efficacement les étoiles selon leur position dans le ciel.

On rappelle qu'une étoile est repérée par son ascension droite et sa déclinaison. Par
souci de simplicité, on considére désormais que deux étoiles ont toujours des
coordonnées entieres et distinctes. On représente en Python les coordonnées d’'une
etoile par un tuple d’entiers (ascension, declinaison).

Dans la suite, on considere les étoiles dont les coordonnées sont contenues dans la
liste de tuples etoi les définie par etoiles = [(29, 21), (17, 14), (10,
30), (35, 13), (30, 63), (15, 20)].

On cherche a construire un arbre binaire de recherche a partir des coordonnées
présentes dans la liste etoiles afin d’accélérer les opérations de traitement sur
celles-ci. Pour cela :

* on commence par trier la liste etoiles par ordre croissant, afin que l'arbre
résultant soit de hauteur minimale ;

e pour construire I'arbre binaire de recherche a partir des éléments de la liste
etoiles compris entre les indices debut (inclu) et Fin (exclu) :

— laracine de l'arbre est I'élément d’indice mi 1 ieu définit par
milieu = (debut + fin)//2;

25-NSI1J1AS1 Page:4/21

— on construit récursivement le sous arbre gauche a l'aide des éléments
de la liste etoi les compris entre les indices debut (inclu) et milieu
(exclu) ;

— on construit récursivement le sous arbre droit & I'aide des éléments de la
liste etoiles compris entre les indices millieu + 1 (inclu) et Fin
(exclu).

Pour implémenter cet algorithme, on représente en Python les arbres binaires non
vides a l'aide de tuples de trois éléments (sag, position, sad) dans lesquels:

- position estlavaleur de laracine. Cette valeur est le couple de coordonnées
permettant de repérer I'étoile ;

- sag et sad sont respectivement les sous-arbres gauche et droit de I'arbre.
L’arbre vide est quant & lui représenté par None.

On rappelle que I'on peut comparer des tuples en Python a I'aide de I'opérateur < : on
compare tout d’abord les valeurs a l'indice O de chaque couple puis, en cas d’égalite,
celles a l'indice 1.

Ainsi, les expressions (1, 4) < (2, 3) et (1, 4) < (1, 6) s’évaluent toutes
les deux a True.

La fonction sorted de Python prend en argument une liste et renvoie une nouvelle
liste contenant les mémes valeurs triées dans I'ordre croissant a I'aide de 'opérateur <.

7. Donner la liste renvoyée par l'instruction sorted(etoiles).

8. Dessiner l'arbre binaire représenté par le tuple (((None, (1, 34),
None), (2, 35), None), (11, 36), (None, (17, 30), None)).

L’arbre construit a partir de la liste etoi les a donc pour représentation Python :

(((None, (10, 30), None), (15, 20), (None, (17, 14), None)),
(29, 21), ((None, (30, 63), None), (35, 13), None))

Il est représenté sur la Figure 2 ci-apres.

25-NSI1J1AS1 Page:5/21

{29 21)

N

(15, 20) (35, 13)

N [

(10, 30) (17, 14) (30, 63)

Figure 2. Arbre associé a la liste etoiles
9. Dessiner l'arbre binaire de recherche obtenu a partir de la liste :
[(1, 33), (2, 30), (2, 33), (4, 30), (8, 39)]

10. Recopier et compléter les lignes 3, 7, 8, 9 et 11 du code de la fonction
construction qui prend en parameétres une liste etoi les supposée triée par
ordre croissant, ainsi que deux entiers debut et Fin. Cette fonction renverra
'arbre binaire de recherche associé aux coordonnées présentes entre les
indices debut (inclus) et fin (exclu) de la liste etoi les.

Par exemple, I'appel initial permettant de construire I'arbre associé a la liste
etoiles est construction(etoiles, 0, 6).

L’indice du milieu est 3, le sous-arbre gauche est renvoyé par I'appel
construction(etoiles, 0, 3) etle sous-arbre droit par
construction(etoiles, 4, 6).

1 def construction(etoiles, debut, fin):

2 if debut == fin:

3 return ...

4

5 milieu = (debut + fin) // 2
6

7 sag = construction(...)

8 racine = ...

9 sad = ...

10

11 return ...

11. Ecrire le code de la fonction en_arbre qui prend en paramétre une liste
etoi les de couples de coordonnées non triés et renvoie I'arbre construit selon
la démarche décrite plus haut. On pourra utiliser la fonction construction de
la question précédente.

On souhaite désormais écrire une fonction contient qui prend en parametres un
arbre binaire de recherche arbre tel que renvoyé par la fonction construction ainsi

25-NSI1J1AS1 Page :6/21

gu’'un tuple d’entiers position représentant les coordonnées d’une étoile. Cette
fonction renvoie True si I'arbre contient cette étoile, False dans le cas contraire.

12. Recopier et compléter les lignes 3, 8, 9, 10 et 12 du code de la fonction
contient.

1 def contient(arbre, position):

2 if arbre is None:

3 return

4

5 sag, valeur, sad = arbre
6

7 1T position < valeur:

8 return contient(..., ...)
9 elif ___:

10 return

11 else:

12 return

25-NSI1J1AS1 Page:7/21

Exercice 2 (6 points)

Cet exercice porte sur les systemes d’exploitation, les processus, les structures de
données linéaires, la programmation en Python et en particulier la programmation
orientée objet.

Partie A

“Le systeme d’exploitation est chargé d’allouer les ressources (mémoires, temps
processeur, entrées/sorties) nécessaires aux processus et dassurer que le
fonctionnement d’un processus n’interfére pas avec celui des autres.”

Source : Wikipédia, extrait de I'article consacré aux processus.
1. Expliquer succinctement, dans ce contexte, ce qu’est un processus.
On rappelle qu’un processus peut-étre soit élu, soit bloqué, soit prét.
2. Recopier et compléter le schéma ci-dessous avec les termes suivants :

élu, bloqué, prét, élection, blocage, déblocage.

Fin

............ /

Figure 1. Schéma processus

On considére qu’'un monoprocesseur est utilisé. Le systeme d’exploitation tel un chef
d’orchestre, gere I'acces au processeur selon la régle du « premier arrivé, premier servi
». A chaque processus, on associe un instant d’arrivée (instant ol le processus
demande I'acces au processeur pour la premiére fois) et une durée d’exécution (durée
d’accés au processeur nécessaire pour gue le processus s’'exécute entierement).

3. Donner la structure de données la plus adaptée pour gérer l'accés des
processus au processeur selon la regle du « premier arriveé, premier servi ».

25-NSI1J1AS1 Page :8/21

Le tableau ci-dessous présente les instants d’arrivées et les durées d’exécution de
quatre processus :

4 processus
Processus instant d’arrivée durée d’exécution
P1 0 4
P2 2 2
P3 3 4
P4 4 2

4. Recopier et compléter, a l'aide du tableau, le schéma ci-dessous avec les
processus P1 a P4 en utilisant la régle du « premier arrivé premier servi ».

LL L Ll L[]
> Temps
15

0 5 10

Figure 2. Utilisation du processeur

5. Déterminer le temps qu’a d attendre le processus P4 avant de pouvoir accéder
au processeur.

Partie B
6. Expliquer en quoi consiste la notion d’'interblocage.

Afin d’éviter une situation d’interblocage, une solution consiste a attribuer a chaque
processus un numero de priorite.

On souhaite modéliser ce mode de fonctionnement mettant en jeu des numéros de
priorité :

- en utilisant une liste de tuples, tuple constitué d’'un entier représentant le
numéro de priorité ainsi que d’'une chaine de caracteres représentant le nom du
processus ;

- le processus prioritaire est celui dont le numéro de priorité est le plus petit.

Il est donc important que la liste soit et reste triée dans I'ordre décroissant des numeéros
de priorités.

Exemple :

>>> exemple = [(10, “Edge®), (8, "Firefox"), (5, "Chrome®), (1,
*Vivaldi®)]

>>> # La liste est triée, le processus le plus prioritaire est
*Vivaldi-®

25-NSI1J1AS1 Page:9/21

On considere la classe Priority_Queue dont l'attribut liste_priorite est une
liste de tuples, constitués d’'un numéro de priorité et d’'un nom de processus comme
dans I'exemple ci-avant.

1 class Priority_Queue:

7.

def __init_ (self):
self_liste priorite = []

def est_vide(self):
""" Renvoie Vrai si la liste_priorite
est vide, Faux sinon

return self.liste_priorite == []

def sortir(self):
""" Retire et renvoie le dernier élément de
liste priorite™™
assert ...

def index_insertion_element(self, element):
"""Renvoie la position/index d"insertion
d"element dans liste priorite triée
par ordre décroissant
de numéro priorité

if self.est vide():

else:
debut = 0O
fin = len(self.liste priorite) - 1
milieu = (debut + fin) // 2
while ... <= fin:
iT self._liste_priorite[milieu][0] > ...:
debut = ...
elif self_liste priorite[milieu][0O] < ...:
fin = _ ..
else:
cas d"egalité de priorité
. milieu
milieu = __.
return milieu + 1

def inserer(self, element):
"""Modifie liste priorite en insérant
element a la position adéquate
dans lI"ordre décroissant de

Zunnung

numéro de prioriteé

Ecrire l'instruction permettant d’instancier navigateurs un objet de la classe
Priority_Queue.

25-NSI1J1AS1 Page:10/21

On rappelle que la méthode pop(), appelée sans argument, supprime et renvoie le
dernier élément d'une liste.

>>> fruits = ["pomme®, “pomme®, “raisin®, "orange", "“poire-]
>>> fruits.pop()

"poire”

>>> fruits

[pomme®, “pomme®", “raisin®, “orange”]

8. Recopier et compléter les lignes 14 et 15 du code de la méthode sortir qui
apres avoir vérifié, sous la forme d’une précondition, que 'objet n’est pas vide,
retire et renvoie le dernier élément de liste priorite.

Pour maintenir la liste de priorités triée dans l'ordre décroissant des numéros de
priorités, il est indispensable de savoir a quelle position on doit insérer un nouvel
élément en fonction de sa priorité.

Cette question ne porte que sur la détermination de la position a laquelle devrait étre
inséré un élément et cela sans effectuer d’insertion.

On considere, par exemple, que navigateurs. liste_priorite contient
[(10, “Edge®), (8, "“Firefox"), (5, *"Chrome®), (1, "“Vivaldi®)].
Si on souhaite insérer :

- lélement (12, "Opera®) on devrait I'insérer au tout début, & la position 0 de
navigateurs.liste_priorite;

- I'élément (6, "Brave®) on devrait I'insérer a la position 2 juste avant (5,
Chrome®) ;

- l'élément (0O, “Safari”) on devrait I'insérer a la position 4 c’est-a-dire
I'ajouter a la fin de la liste.

Pour déterminer la position d’insertion d’un nouvel élément on adapte la méthode dite
de recherche dichotomique dans une liste triée dans I'ordre décroissant des numéros
de priorités (voir la méthode index_insertion_element).

On compare la priorité du tuple element a la priorité du tuple se situant au milieu de
la liste _priorite.

- sielle est strictement supérieure on recommence dans la moitié gauche de
liste priorite;

- sielle est strictement inférieure on recommence dans la moitié droite de
liste priorite;

- sielle est égale la position devra étre le milieu.

9. Donner le colt en temps de la recherche dichotomique.

25-NSI1J1AS1 Page:11/21

10. Recopier et compléter les huit lignes 24, 29, 30, 31, 32, 33, 36, et 37 du code
de la méthode index_insertion_element qui prend en parametre un
élément element et quirenvoie la position d’'insertion de I'élément
element en utilisant une méthode dichotomique.

11. Ecrire, sans utiliser la méthode insert des listes Python, une méthode
inserer qui prend en parametre un elément e lement, et modifie
liste priorite eninsérant I'élément element a la position adéquate de
la liste triée par ordre décroissant des numeéros de priorités.

Exemples :

>>> navigateurs.liste priorite

[(10, "Edge®), (8, “Firefox®), (5, "Chrome®"), (1,
*Vivaldi©)]

>>> pavigateurs.inserer((16, "Brave®))

>>> navigateurs.liste priorite

[(16, “Brave®), (10, “Edge®), (8, “Firefox"), (5,
"Chrome®), (1, "Vivaldi®)]

>>> navigateurs.inserer((6, "Safari®))

>>> navigateurs.liste priorite

[(16, "Brave®), (10, "Edge®), (8, "“Firefox"), (6,
*Safari®), (5, “Chrome®), (1, "“Vivaldi®)]

>>> navigateurs.inserer((0, "LynxT®))

>>> navigateurs.liste priorite

[(16, “Brave®), (10, "Edge*), (8, “Firefox"), (6,
"Safari*), (5, "Chrome®), (1, "Vivaldi®), (0, "Lynx")]

25-NSI1J1AS1 Page:12/21

Exercice 3 (8 points)

Cet exercice porte principalement sur les systémes d’exploitation, les réseaux et la
programmation de base en Python.

Une association de jardinage anime un réseau d’échange de plantes.

Partie A

Les échanges de plantes sont traités a travers un systeme de gestion de fichiers dans
un espace de stockage partage.

Le répertoire association est positionné a la racine du systéme de fichiers.

Un répertoire annonces contient des fichiers au format HTML décrivant I'échange
souhaité. Le fichier contient notamment le nom de la personne qui soumet 'annonce
et décrit la plante proposée ainsi que le type de plante souhaitée en échange. Chaque
adhérent dispose d’'un répertoire a son nom a l'intérieur du répertoire adherents.

La figure ci-dessous donne un extrait de I'arborescence :

| ---+ association
| ---+ adherents
| |-—-+ abi
| |--tulipe_chen._html

| | --muguet_abi .html
|

| ---+ bachir

| | --reseda_dana.html
|

| [---]

--—+ annonces
| --rosier_abi._html
| --pivoine_bachir_html

L'utilisateur manipule le systeme de fichiers a travers un terminal (en ligne de
commande). Il travaille sur un systéme de type Unix.

1. Décrire le résultat de lacommande Is Zassociation saisie dans un terminal.

2. Le repertoire courant dans le terminal est /association. Parmi les
commandes systemes suivantes, identifier celle qui permet de définir
annonces comme répertoire courant.

25-NSI1J1AS1 Page :13/21

— c¢d Zannonces
— c¢d ../annonces
— c¢d annonces

— c¢d association/Zannonces

Les quatre premieres lignes de la documentation obtenue avec la commande cp --
help sont les suivantes :

Utilisation - cp [OPTION]... [-T] SOURCE DEST

ou : cp [OPTION]... SOURCE... REPERTOIRE

ou : cp [OPTION]... -t REPERTOIRE SOURCE...
Copier la SOURCE vers DEST ou plusieurs SOURCEs vers
REPERTOIRE.

Les quatre premiéres lignes du résultat de mv --help sont :

Utilisation - mv [OPTION]... [-T] SOURCE DEST

ou : mv [OPTION]... SOURCE... REPERTOIRE

ou : mv [OPTION]... -t REPERTOIRE SOURCE...
Renommer SOURCE en DEST, ou déplacer le ou les SOURCEs vers
REPERTOIRE .

3. Expliquer la différence entre les commandes suivantes en précisant le nombre
d’exemplaires du fichier rosier_abi .html a lissue de chacune d’elles.

— cp rosier_abi.html ._/adherents/abi/

— mv rosier_abi.html ._./adherents/abi/

Abi propose une annonce a laguelle Bachir voudra répondre. L'annonce d’'Abi figure
dans la page rosier_abi .html qui s’affiche ainsi dans un navigateur :

Echange un rosier bicolore "Léo Ferré"

Proposition de troc
Nom : Abi

Plante : Rosier Léo Ferré
Lien: Photo du rosier

En échange de

Nom :
Plante : Orchidee
Lien :

Figure 1. rosier_abi.html

Bachir devra répondre a I'annonce dans le code HTML de la page
rosier_abi.html ci-dessous.

25-NSI1J1AS1 Page:14/21

<html><body>
<hl>Echange un rosier bicolore "Léo Ferré'</hl>

<h2>Proposition de troc</h2>
<table>
<tr><td>Nom :</td> <td>Abi</td></tr>
<tr><td>Plante :</td><td>Rosier Léo Ferré</td></tr>
<tr><td>Lien : </td><td>Photo du
rosier</td></tr>
</table>

<h2>En échange de</h2>

<table>
<tr><td>Nom :</td><td></td></tr>
<tr><td>Plante :</td><td>Orchidée</td></tr>
<tr><td>Lien : </td><td></td></tr>

</table>

</body></html>

Pour répondre a 'annonce Bachir doit écrire au bon endroit dans le code source de la
page HTML les informations suivantes :

- Nom : Bachir
- Plante : Orchidée noire Cymbidium
- Lien: monsiteperso.fr/bachir/orchidee. jpg

4. Recopier et compléter la section de code que Bachir doit modifier pour répondre
a I'annonce.

Lorsqu’'une personne veut répondre a l'annonce, elle procede selon l'algorithme
suivant :

- Etape 1: elle ouvre la page HTML dans un éditeur ;
- Etape 2 : elle ajoute les informations nécessaires a I'échange ;
- Etape 3 : elle enregistre les modifications ;

- Etape 4 : elle fait une copie de l'annonce complétée vers son répertoire
personnel ;

- Etape 5 : 'exemplaire original modifié est déplacé vers le répertoire personnel
de la personne qui a proposé I'annonce.

A lissue de cet algorithme, I'annonce a disparu du répertoire annonces.

25-NSI1J1AS1 Page:15/21

5. Bachir et Chen veulent tous les deux répondre a 'annonce. lls exécutent chacun
I'algorithme sensiblement & la méme heure.

En détaillant étape par étape un exemple, expliquer pourquoi cet algorithme se
comporte mal avec la mise en concurrence des deux propositions d’échange.

6. Proposer un nouvel algorithme qui empéche le conflit précédent.
Partie B

Les membres de I'association s’organisent en réseau afin de s’échanger les plantes
de la main a la main.

Certains membres de I'association se rencontrent trés réegulierement. Dans ce cas, on
dira qu’ils sont amis. Quand un membre de I'association doit faire parvenir une plante,
il la confie a un ami qui lui-méme la confiera a quelgu’un d’autre, a 'image des routeurs
au cceur d’Internet qui se transmettent les messages a router.

Pour acheminer au mieux les plantes, I'association s’inspire du protocole RIP. Ce
protocole de routage s’adapte aux modifications du réseau.

On rappelle que le protocole RIP vise a minimiser le nombre de sauts sur les chemins
de routage construits. Dans le contexte de I'exercice, il s’agira de minimiser le nombre
d’échanges entre adhérents pour faire parvenir la plante a son destinataire.

Les membres sont donc amenés a servir d'intermédiaire. Dans ce cadre, chaque
membre construit I'équivalent d’'une table de routage.

La table de routage d’Abi est la suivante :

Table de routage d’Abi
Destinataire Intermédiaire Distance
Bachir Bachir 1
Chen Bachir 2
Dana Dana 1
Edie Dana 2

D’aprés cette table, Abi est amie avec Bachir. Si Abi doit faire parvenir une plante a
Chen, elle doit la confier a Bachir car il est un ami de Chen. La distance correspond
au nombre de rencontres nécessaires pour faire parvenir la plante.

Exemple : Dans le tableau, on lit que la distance entre Abi et Chen vaut 2 car si Abi
veut faire parvenir un rosier a Chen, il faut que Abi confie le rosier a Bachir puis que
Bachir le donne a Chen. Edie n’est pas un ami d’Abi, son nom ne peut pas apparaitre
dans la colonne « Intermédiaire ».

25-NSI1J1AS1 Page:16/21

7. Reproduire le graphe ci-dessous puis ajouter une aréte pour que le graphe
devienne cohérent avec la table de routage d’Abi.

Chen — Edie

Figure 2. Relations entre les membres de I'association

Frida rejoint I'association. Elle est amie avec Abi. A son arrivée dans I'association,
Frida ne connait personne d’autre. Pour construire sa table de routage, Frida exploite
les informations de la table de routage d’Abi.

8. Reproduire et compléter la table de routage de Frida.

Table de routage de Frida
Destinataire Intermédiaire Distance
Abi Abi 1
Bachir
Chen
Dana
Edie

Abi met également sa table de routage a jour pour y inclure Frida, puis elle va
communiquer sa table de routage a tous ses autres amis (Bachir et Dana). Par la suite,
Bachir et Dana, a leur tour, vont communiquer leur table de routage a leurs amis, et
ainsi de suite.

9. Décrire les modifications que doivent faire Abi, Bachir, Chen, Dana et Edie dans
leur table de routage respective suite a I'arrivée de Frida.

Aprés quelques semaines les relations ont évolué, certains liens se sont rompus et un
nouvel adhérent est arrivé. Abi et Frida échangent les informations de leur table de
routage respective afin de les actualiser.

25-NSI1J1AS1 Page:17/21

Table de routage d’Abi
Destinataire Intermédiaire Distance
Bachir Bachir 1
Chen Bachir 3
Dana Dana 1
Edie Dana 2
Frida Frida 1
Guy Dana 3
Hakim Hakim 1

Table de routage de Frida
Destinataire Intermédiaire Distance
Abi Abi 1
Bachir Abi 2
Chen Chen 1
Dana Abi 2
Edie Guy 2
Guy Guy 1

10. Décrire les modifications que chacune d’elles doit apporter a sa table de routage
afin de maintenir les routes les plus courtes pour chaque destinataire.

Partie C

Dans cette partie, les tables de routage sont structurées sous forme de dictionnaires.
Les clés du dictionnaire sont les destinataires. La valeur associée a un destinataire est
le tuple (intermediaire, distance).

La table de routage d’Abi est la suivante :

1 table_abi = {"Abi" > ("Abi-* , 0),
2 "Bachir* : ("Bachir® , 1),

25-NSI1J1AS1 Page :18/21

3 "Chen* : ("Bachir® , 3),
4 "Dana* : ("Dana- , 1),
5 "Edie” : ("Dana- , 2),
6 "Guy* : ("Dana- , 3),
7 "Hakim* - ("Hakim® , 1)}

La table de routage d’Hakim est la suivante :

1 table_hakim = {"Ines" : ("Janus® , 2),
2 *Janus-” - ("Janus® , 1)}

11. En vous appuyant sur la table de routage d’Hakim, répondre par vrai ou faux a
chacune des affirmations suivantes :

— Hakim et Janus sont amis ;
— Hakim et Ines sont amis ;
— Janus et Ines sont amis.

La fonction amis prend en argument une table de routage d’'une personne et elle
renvoie la liste de ses amis, c’est-a-dire la liste des intermédiaires, sans doublon. La
fonction a été correctement programmeée, mais par erreur les lignes de codes ont été
mélangées (elles ont été triées dans I'ordre alphanumérique croissant). Les espaces
en début de ligne ont été conservés et ils sont donc corrects, seul I'ordre des lignes a
été modifié.

liste.append(intermediaire)

if Intermediaire not in liste:
renvoie la liste des intermédiaires de la table de

for (intermediaire, distante) in table.values():
liste = []
return liste

7 def amis(table):

1
2
3
routage, sans doublon
4
5
6
12. Remettre les lignes de codes dans le bon ordre.

Dans le but d’automatiser la mise a jour des tables de routages, il est proposé le
programme suivant :

1 def maj(ma_table, ami, table_ami):

"""mise a jour de ma_table (dict) avec les
informations de table_ami (dict).

ami est du type str."""

ifT ami not In ma_table_keys():
ma_table[ami] = C ... , --.)

O~NOUITRAWN

25-NSI1J1AS1 Page:19/21

9 for adh in table_ami.keys():

10 (intermediaire, distance) = table_ami[adh]

11 if adh not in ma_table.keys():

12 ma_table[adh] = (intermediaire, distance + 1)
13 ifT ma_table[adh][...] > distance + 1:

14 ma_table[adh] = (ami, ...)

15

16 for adh in ma_table_keys():

17 (intermediaire, distance) = ma_table[adh]

18 1T adh not in table_ami.keys() and adh !'= ami and
intermediaire == ami:

19 ma_table[adh] = (None, float("iInf"))

20

21 return ma_table

La fonction maj prends en parametres :
- undictionnaire ma_table représentant une table de routage ;
- une chaine de caracteres ami désignant le nom de I'ami ;

- undictionnaire table_ami représentant la table de routage de I'ami. C’est
de cette table de routage que sont extraites les informations utiles.

Cette fonction met a jour la table de routage ma_table.

13. Expliquer le test de la ligne 6 du code de la fonction maj.
14. Recopier et compléter la ligne 7 du code de la fonction maj.

15. La boucle de la ligne 9 parcourt les clés de table_ami pour mettre a jour les
informations de ma_table. Recopier et compléter les lignes 13 et 14 du code
de la fonction maj.

La fonction nettoie, dont le code est donné ci-aprés, prend en parametre un
dictionnaire table représentant une table de routage. Elle a pour objectif de
supprimer les entrées du dictionnaire des membres devenus injoignables (suite a la
mise-a-jour de la table dans la fonction maj aux lignes 16 a 19).

1 def nettoie(table):
for (adh, ligne) in table.items():
iT ligne[0] == None:
del table[adh]

a b~ wWN

25-NSI1J1AS1 Page :20/21

Il est impossible, avec le langage Python, de supprimer des entrées dans un
dictionnaire a l'intérieur d’'une boucle qui le parcourt. C’est la raison pour laquelle, a
I'exécution de cette fonction avec une certaine table, on obtient I'erreur suivante :

Traceback [...]line 1, in nettoie
for (adh, ligne) in table.items():
RuntimeError: dictionary changed size during iteration

16. Proposer une version corrigée de la fonction nettoie qui évite le
déclenchement de I'erreur décrite.

25-NSI1J1AS1 Page:21/21

