
25-NSIJ1ME3 Page : 1 / 19

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

ÉPREUVE DU MARDI 9 SEPTEMBRE 2025

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 19 pages numérotées de 1/19 à 19/19.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ1ME3 Page : 2 / 19

Exercice 1 (6 points)

Cet exercice porte sur la programmation, les réseaux et les protocoles de routage.

Rappels :

Une adresse IPv4 est composée de 4 octets, soit 32 bits. Elle est notée a.b.c.d, où

a, b, c et d sont les écritures décimales des valeurs des 4 octets. Cette écriture est

nommée notation décimale pointée.

La notation a.b.c.d/n est appelée notation CIDR (Classless Inter Domain Routing),

l’entier n représentant le masque du réseau. Les n premiers bits à gauche dans

l’adresse IP représentent la partie réseau, les bits à droite qui suivent représentent la

partie machine.

• L’adresse IPv4 dont tous les bits de la partie machine sont à 0 est appelée

adresse du réseau.

• L’adresse IPv4 dont tous les bits de la partie machine sont à 1 est appelée

adresse de diffusion.

• Le masque du réseau est composé de 4 octets : les n premiers bits à gauche

sont égaux à 1 et les bits à droite qui suivent sont égaux à 0.

Dans un réseau informatique, lorsqu’une machine cherche à transmettre des données

à une autre machine, elle les transmet sans passer par un routeur si le destinataire fait

partie du même réseau, sinon, elle transmet les données à un routeur qui fait office de

passerelle entre les différents réseaux.

Dans le schéma réseau de la figure 1, toutes les machines du réseau

192.168.1.0/24 ont pour adresse de passerelle celle de l’interface G0 du routeur

R1, soit 192.168.1.254.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 3 / 19

Figure 1. Réseau

1. Donner le nom, ainsi que l’interface, du routeur qui constitue la passerelle pour

les machines du réseau 192.168.2.0/24.

La politique d’attribution des adresses IP dans les réseaux nous impose de choisir la

dernière adresse IP disponible dans le réseau pour la passerelle. Ainsi, dans le réseau

192.168.1.0/24, la passerelle a pour adresse IP 192.168.1.254.

2. Donner l’adresse IP à attribuer à la passerelle du réseau 172.16.0.0/16.

Dans le réseau 50.50.50.4/30, l’interface G2 du routeur R1 a pour adresse IP

50.50.50.5.

3. Lister les quatre adresses du réseau 50.50.50.4/30 et attribuer une adresse

IP à l’interface G0 du routeur R4.

Pour choisir la bonne interface de sortie, la passerelle utilise une table de routage qui

identifie une interface par où sortir pour trouver le réseau de destination des données

et un nombre appelé métrique qui représente le coût de la liaison. Cette métrique

dépend du type de routage mis en œuvre, manuel (statique) ou automatique

(protocoles RIP, OSPF, …). Dans le cas d’un routage automatique utilisant le protocole

RIP, la métrique correspond au nombre minimum de routeurs à traverser pour joindre

le réseau de destination.

4. Recopier et compléter les lignes manquantes de la table de routage du routeur
R1 dans le cas d’un routage automatique utilisant le protocole RIP. En cas
d’égalité de métrique, on choisira l’interface de numéro le plus faible.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 4 / 19

Table de routage du routeur R1

Réseau de destination Interface de sortie Métrique

192.168.1.0/24 G0 0

192.168.2.0/24

192.168.3.0/24

172.16.0.0/16 G2 2

10.0.0.0/8 G1 1

50.50.50.0/30 G1 0

50.50.50.4/30 G2 0

50.50.50.8/30 G3 0

50.50.50.12/30 G2 1

50.50.50.16/30 G3 1

50.50.50.20/30

50.50.50.24/30

On décide de modéliser la table de routage du routeur R1 par un tableau de triplets

contenant l’adresse du réseau de destination et son masque en notation CIDR (sous

forme d’un quintuplet), le nom de de l’interface de sortie vers le réseau de destination

et la métrique.

5. Recopier et compléter les lignes manquantes pour définir le tableau

t_routage pour qu’il modélise complètement la table de routage du routeur

R1 (vous écrirez les numéros de lignes complétées).

 1 t_routage = [((192, 168, 1, 0, 24), 'G0', 0),

 2 ...,

 3 ...,

 4 ((172, 16, 0, 0, 16), 'G2', 2),

 5 ((10, 0, 0, 0, 8), 'G1', 1),

 6 ((50, 50, 50, 0, 30), 'G1', 0),

 7 ((50, 50, 50, 4, 30), 'G2', 0),

 8 ((50, 50, 50, 8, 30), 'G3', 0),

 9 ((50, 50, 50, 12, 30), 'G2', 1),

10 ((50, 50, 50, 16, 30), 'G3', 1),

11 ...,

12 ...

13]

On trouve l’adresse du réseau auquel appartient une adresse IP en appliquant un

opérateur ET bit à bit entre l’adresse IP et le masque de sous-réseau.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 5 / 19

Par exemple, pour trouver le réseau auquel appartient l’adresse IP

192.168.1.10/24 on fait :

adresse IP : 11000000.10101000.00000001.00001010

masque : 11111111.11111111.11111111.00000000

 & -----------------------------------

 11000000.10101000.00000001.00000000

On peut conclure que l’adresse IP 192.168.1.10/24 appartient au réseau

192.168.1.0/24.

On dispose d’une fonction et_bit_a_bit qui renvoie le résultat de l’opération ET bit

à bit entre deux entiers. Ainsi et_bit_a_bit(10, 252) renverra 8 car 8 =

(0000 1000)2, 10 = (0000 1010)2 et 252 = (1111 1100)2.

De plus, on dispose d’une fonction mask_for_size(size) qui prend en paramètre

un entier size qui représente un masque de sous-réseau en notation CIDR et le

renvoie en notation décimale sous la forme d’un quadruplet (𝑎, 𝑏, 𝑐, 𝑑) d’entiers compris

entre 0 et 255.

Exemples :

>>> mask_for_size(24)

(255, 255, 255, 0)

>>> mask_for_size(26)

(255, 255, 255, 192)

6. Donner la sortie de l’exécution du code suivant.

 >>> mask_for_size(30)

7. Déterminer à quel réseau appartient l’adresse IP 50.50.50.6/30 en écrivant

l’opération ET bit à bit effectuée. On convertira 50 et 6 en binaire.

8. Recopier et compléter la fonction is_in_network(address, network)qui

prend en paramètres une adresse IP address et l’adresse d’un réseau

network, chacune fournie sous la forme d’un tuple, et qui renvoie True si

l’adresse IP appartient au réseau, et False sinon.

 Exemples :

 >>> is_in_network((192, 168, 1, 1), (192, 168, 1, 0, 24))

True

>>> is_in_network((192, 168, 1, 1), (192, 168, 2, 0, 24))

False

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 6 / 19

1 def is_in_network(address, network):

2 network_mask = mask_for_size(...)

3 for i in range(4):

4 if et_bit_a_bit(network_mask[i], address[i]) != ...:

5 return ...

6 return ...

Le routeur sélectionne l’interface de sortie vers le réseau auquel appartient l’adresse

IP de destination.

9. Écrire la fonction choose_interface(t_routage, destination_ip) qui

prend en paramètres un tableau t_routage qui modélise une table de routage

et un quadruplet destination_ip qui représente une adresse IP, et qui

renvoie l’interface de sortie du routeur si l’adresse IP destination_ip est

dans un des réseaux présents dans t_routage. Si l’adresse IP de destination

n’est pas présente, la fonction renvoie None.

 Exemples :

 >>> choose_interface(t_routage, (192, 168, 1, 12))

G0

>>> choose_interface(t_routage, (192, 168, 5, 12))

None

Dans le cas d’un routage automatique utilisant le protocole OSPF, la métrique tient

compte du débit des liaisons dont le coût est calculé selon la formule suivante (le débit

est donné en bits/seconde) :

coût =
1010

Débit

Les débits des liaisons entre les routeurs sont donnés ci-dessous :

Liaisons inter-routeurs Type Débit

R1 - R2 Gigabit Ethernet 1 Gb/s

R1 - R4 Fast Ethernet 100 Mb/s

R1 - R5 Gigabit Ethernet 1 Gb/s

R2 - R3 Gigabit Ethernet 1 Gb/s

R2 - R4 Fibre 10 Gb/s

R4 - R5 Gigabit Ethernet 1 Gb/s

R4 - R6 Fibre 10 Gb/s

10. Calculer les coûts des trois types de liaisons.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 7 / 19

11. Recopier et compléter les lignes manquantes de la table de routage du routeur
R1 dans le cas d’un routage automatique utilisant le protocole OSPF. Un réseau

directement connecté au routeur a une métrique de 0, sinon, la métrique est le

coût minimum pour joindre le réseau de destination.

Table de routage du routeur R1

Réseau de destination Interface de sortie Métrique

192.168.1.0/24 G0 0

192.168.2.0/24

192.168.3.0/24 G3 20

172.16.0.0/16

10.0.0.0/8

50.50.50.0/30 G1 0

50.50.50.4/30 G2 0

50.50.50.8/30 G3 0

50.50.50.12/30 G3 10

50.50.50.16/30 G3 10

50.50.50.20/30

50.50.50.24/30 G3 11

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 8 / 19

Exercice 2 (6 points)

Cet exercice porte sur l’algorithmique, les listes et la programmation dynamique.

Dans un jeu de stratégie, la carte est un carré de 𝑛 × 𝑛 cases, où 𝑛 est un entier

strictement positif. Certaines cases sont dites constructibles, d’autres ne le sont pas.

Toutes les cartes contiennent au moins une case constructible.

Une telle carte est représentée en Python par une liste de listes. Les cases

constructibles sont représentées par des cellules contenant la valeur 1, celles qui sont

non constructibles par des cellules contenant la valeur 0. On fournit ci-dessous la

représentation d’une carte pour laquelle 𝑛 est égal à 5 :

carte_A = [

 [0, 0, 1, 1, 1],

 [1, 1, 0, 1, 1],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

]

Une base dans la carte est un carré formé de cases constructibles. On cherche à

construire la plus grande base possible, ce qui revient donc à trouver un plus grand

carré, inclus dans la carte, ne contenant que des valeurs 1. Il peut en exister plusieurs.

Dans la carte précédente, la plus grande base possible est un carré de 3 cases de

côté, son coin supérieur gauche est la cellule carte_A[2][1], de coordonnées

(2,1). On dit que cette base est issue de la cellule carte_A[2][1] et que sa taille

vaut 3.

Partie A

On considère la carte_B donnée ci-dessous.

carte_B = [

 [1, 1, 1, 1],

 [0, 1, 1, 1],

 [0, 1, 1, 1],

 [1, 0, 1, 1],

]

1. Donner la taille de la plus grande base carrée ainsi que les coordonnées de la
cellule dont elle est issue.

Afin de répondre à ce problème, on envisage une recherche exhaustive de solution.

Cela signifie que l’on teste tous les carrés inclus dans la carte initiale afin de vérifier

s’ils ne contiennent que des cases constructibles. On considère dans un premier temps

le carré de taille n, puis les quatre carrés de taille n - 1 et ainsi de suite jusqu’aux

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 9 / 19

carrés de taille 1. Dès que l’on trouve un carré constructible, on renvoie sa taille et les

coordonnées de son coin supérieur gauche.

2. On considère un entier taille strictement positif. Déterminer la somme des

valeurs de toutes les cellules d’un carré constructible de taille cases de côté.

La fonction est_constructible prend en paramètres :

• la liste de listes carte représentant la carte ;

• les entiers i_coin et j_coin indiquant les coordonnées de la cellule dont est

issu le carré considéré (i_coin est l’indice de la ligne et j_coin celui de la

colonne) ;

• l’entier positif taille indiquant la taille de ce carré.

Cette fonction renvoie True si le carré décrit par les paramètres est constructible,

False dans le cas contraire.

Cette fonction n’a pas besoin de vérifier que les coordonnées et la taille passées en

paramètres définissent toujours un carré valide dont toutes les cases sont incluses

dans la carte. On suppose que c’est toujours le cas.

3. Compléter le code de la fonction est_constructible.

 1 def est_constructible(carte, i_coin, j_coin, taille):

2 s = 0

3 for i in range(i_coin, i_coin + taille):

4 for j in range(..., ...):

5 s = ...

6 ... # Plusieurs lignes possibles

La fonction plus_grande_base_exhaustive prend en paramètre la liste de listes

carte représentant une carte et renvoie un triplet (taille, i, j) dans lequel

taille est la taille d’un carré constructible de taille maximale et i et j sont les

coordonnées de son coin supérieur gauche.

Cette fonction utilise la méthode exhaustive décrite plus haut.

On rappelle qu’une carte contient toujours au moins une case constructible et que cette

fonction renverra donc toujours un résultat.

4. Compléter le code de la fonction plus_grande_base_exhaustive.

 1 def plus_grande_base_exhaustive(carte):

 2 n = len(carte)

 3 # les tailles vont de n à 1, de -1 en -1

 4 for taille in range(n, 0, -1):

 5 i = 0

 6 while i + taille <= n:

 7 j = ...

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 10 / 19

 8 while ...:

 9 if est_constructible(...):

10 return (taille, i, j)

11 j = ...

12 i = i + 1

Un décompte du nombre de carrés à étudier dans le pire des cas en fonction de la

taille de la carte initiale permet de construire la figure 1 ci-dessous.

Figure 1. Nombre de carrés à étudier en fonction de la largeur de la carte

5. Expliquer pourquoi cette approche exhaustive est inapplicable dans le cas de
grandes cartes.

Partie B

On souhaite désormais résoudre ce problème en utilisant la programmation

dynamique. Pour cela, on construit une liste de listes auxiliaire aux de mêmes

dimensions que la carte et telle que aux[i][j] contienne la taille de la plus grande

base (carrée) issue de carte[i][j].

En reprenant l’exemple de carte_A, on obtient la liste de listes aux_A :

carte_A = [

 [0, 0, 1, 1, 1],

 [1, 1, 0, 1, 1],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

 [0, 1, 1, 1, 0],

]

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 11 / 19

aux_A = [

 [0, 0, 1, 2, 1],

 [1, 1, 0, 1, 1],

 [0, 3, 2, 1, 0],

 [0, 2, 2, 1, 0],

 [0, 1, 1, 1, 0],

]

aux_A[2][1] contient la valeur 3 car la plus grande base issue de la cellule

carte_A[2][1] a une taille de 3.

Une fois la liste de listes auxiliaire aux remplie, on détermine la taille et les

coordonnées de la plus grande base (carrée) de la carte en cherchant la valeur

maximale dans aux.

6. Déterminer la liste auxiliaire aux_B associée à la carte représentée par

carte_B.

 carte_B = [

 [1, 1, 1, 1],

 [0, 1, 1, 1],

 [0, 1, 1, 1],

 [1, 0, 1, 1],

]

On considère une carte carte_C de taille 6 ainsi que la liste auxiliaire aux_C

associée. Seules certaines valeurs sont données ci-dessous.

carte_C = [

 [..., ..., ..., 0, ..., ...],

 [1, ..., ..., ..., ..., ...],

 [..., ..., ..., ..., ..., ...],

 [..., ..., ..., 1, ..., ...],

 [1, ..., ..., ..., ..., ...],

 [..., ..., ..., ..., ..., ...],

]

aux_C = [

 [..., ..., ..., a, 2, ...],

 [b, 0, ..., 1, 1, ...],

 [3, 2, ..., ..., ..., ...],

 [..., ..., ..., c, 2, ...],

 [d, 2, ..., 2, 2, ...],

 [1, 1, ..., ..., ..., ...],

]

7. Déterminer les valeurs des coefficients a, b, c et d.

Pour une liste de listes carte donnée, lorsqu’on construit la liste auxiliaire aux

associée, on commence par remplir les cellules de la dernière ligne et de la dernière

colonne de aux en recopiant celles de carte.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 12 / 19

On admet de façon générale que, pour toutes les autres cellules, si carte[i][j]

vaut 0 alors aux[i][j] prend aussi la valeur 0, et, si carte[i][j] = 1, alors

aux[i][j] se calcule à l’aide de l’expression suivante :

1 + min(aux[i + 1][j], aux[i][j + 1], aux[i + 1][j + 1])

8. Recopier et compléter les lignes 8, 9, 14 et 15 de la fonction calcule_aux qui

prend en paramètre une liste de liste carte et renvoie la liste auxiliaire

associée.

 1 def calcule_aux(carte):

 2 n = len(carte)

 3 aux = [[0 for j in range(n)] for i in range(n)]

 4

 5 # Remplissage de la dernière ligne

 6 # et de la dernière colonne

 7 for k in range(n):

 8 aux[n - 1][k] = ...

 9 aux[...][...] = ...

10

11 # On complète les lignes de bas en haut

12 for i in range(n - 2, -1, -1):

13 # On complète les colonnes de droite à gauche

14 for j in range(...):

15 if ...:

16 aux[i][j] = 1 + min(aux[i + 1][j],

17 aux[i][j + 1],

18 aux[i + 1][j + 1])

19 return aux

La fonction plus_grande_base prend en paramètre une liste de listes carte et

renvoie la taille et les coordonnées du coin supérieur gauche d’une base de taille

maximale. Cette fonction utilise la liste auxiliaire aux renvoyée par l’appel

calcule_aux(carte).

9. Compléter la fonction plus_grande_base à partir de la ligne 7. Il est

possible d’écrire plusieurs lignes.

 1 def plus_grande_base(carte):

2 n = len(carte)

3 aux = calcule_aux(carte)

4 taille_max = aux[0][0]

5 i_max = 0

6 j_max = 0

7 ...

carte_1000 est la liste représentant une carte de 1 000 × 1 000 cases et

carte_3000 celle représentant une carte de 3 000 × 3 000 cases.

L’appel plus_grande_base(carte_1000) s’exécute en 0,4 seconde.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 13 / 19

10. Parmi les durées suivantes, indiquer celle qui permet d’estimer le temps

d’exécution de l’appel plus_grande_base(carte_3000) :

– 0,4 seconde ;

– 1,2 seconde ;

– 3,6 secondes.

 Justifier.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 14 / 19

Exercice 3 (8 points)

Cet exercice porte sur le langage SQL, sur la programmation en Python et la recherche

textuelle.

Le sujet d’une étude porte sur les papillons, la corrélation entre leur présence et celle

de certaines plantes ainsi que sur la classification de nouvelles espèces.

Partie A. Corrélation avec la présence des plantes

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE

(avec les opérateurs logiques AND, OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,

INSERT.

Dans le cadre de cette étude, une base de données faune_flore.db a été créée

pour étudier la corrélation entre la présence d’espèces de papillons et celle de

certaines plantes. Cette base de données regroupe les tables papillon, plante et

zone_geographique.

La table papillon comporte les informations suivantes :

• l’identification du papillon (num) ;

• le nom commun du papillon (nomCo) ;

• le nom scientifique du papillon (nomSc) ;

• la taille moyenne du papillon en millimètres (taille) ;

• le principal habitat du papillon (habitat) ;

• la zone géographique où le papillon est le plus présent (zone). Cet attribut fait

référence à l’attribut num de la table zone_geographique.

Un extrait de cette table est donné ci-après.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 15 / 19

papillon

num nomCo nomSc taille habitat zone

458 Monarque Danaus plexippu 100 Prairies 3

459 Citron de

Provence

Gonepteryx

cleopatra

30 Prairies 1

460 Paon-du-jour Aglais io 6 Jardins 6

461 Machaon Papilio machaon 85 Forêts 2

462 Petite Tortue Aglais urticae 30 Prairies 5

463 Robert-le-Diable Polygonia c-album 25 Forêts 4

La table plante comporte les informations suivantes :

• l’identification de la plante (num) ;

• le nom commun de la plante (nomCo) ;

• le nom scientifique de la plante (nomSc) ;

• le principal habitat de la plante (habitat) ;

• la zone géographique où elle est la plus présente (zone). Cet attribut fait

référence à l’attribut num de la table zone_geographique.

Un extrait de la table plante est donné ci-dessous.

plante

num nomCo nomSc habitat zone

128 Orchidée Phalaenopsis Phalaenopsis Forêts 5

129 Bambou Bambusoideae Forêts 3

130 Rose Rosa Haies 2

131 Lilas Syringa Haies 6

132 Coquelicot Papaver rhoeas Jardins 4

133 Lavande Lavandula Collines 1

La table zone_geographique contient les informations suivantes :

• l’identification de la zone géographique (num) ;

• le nom de la zone (zone).

Un extrait de la table zone_geographique est donné ci-après.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 16 / 19

zone_geographique

num zone

1 Afrique du Nord

2 Amérique du Nord

3 Amérique du Sud

4 Asie

5 Asie du Sud

6 Europe

1. Donner la définition d’une clé primaire.

2. Expliquer pourquoi l’attribut habitat de la table papillon ne peut pas être

une clé primaire.

3. Donner le résultat obtenu suite à l’exécution de la requête suivante si on
l’applique sur l’extrait de table donné :

 SELECT taille

FROM papillon

WHERE nomCo='Machaon'

Après avoir mesuré l’envergure de plusieurs papillons Petite Tortue, un des

scientifiques de l’étude a calculé la nouvelle moyenne des tailles pour ce papillon, qui

est maintenant de 50 mm.

4. Écrire une requête qui met à jour la table papillon, suite au calcul de cette

nouvelle moyenne.

5. Écrire une requête qui affiche le nom commun de tous les papillons présents
dans les prairies et dont la taille est strictement inférieure à 55 mm.

6. Écrire le résultat obtenu suite à l’exécution de la requête suivante si on
l’applique sur les extraits des tables donnés.

 SELECT nomSc

FROM plante

JOIN zone_geographique

ON plante.zone = zone_geographique.num

WHERE zone_geographique.zone = 'Asie'

7. Écrire une requête qui affiche le nom commun des papillons et celui des plantes
qui se trouvent dans le même habitat et dont la taille des papillons est
strictement inférieure à 55 mm.

8. Écrire le résultat obtenu suite à l’exécution de la requête suivante si on
l’applique sur les extraits des tables donnés.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 17 / 19

 SELECT papillon.nomCo, plante.nomCo

FROM papillon

JOIN zone_geographique

ON papillon.zone = zone_geographique.num

JOIN plante

ON plante.zone = zone_geographique.num

WHERE zone_geographique.zone = 'Europe'

9. Écrire une requête qui affiche le nom commun des papillons qui se trouvent
dans la même zone géographique que les coquelicots.

Partie B. Classification d’une nouvelle espèce

Les espèces de papillons sont regroupées dans une liste de dictionnaires. Pour

simplifier, seuls les attributs num (l’identifiant du papillon), nomCo (son nom commun),

nomSc (son nom scientifique) et taille (sa taille) seront considérés dans cette partie.

Une partie de la liste papillon est donnée ci-dessous :

papillon = [

 {'num': 458, 'nomCo': 'Monarque',

 'nomSc': 'Danaus plexippu', 'taille': 100},

 {'num': 459, 'nomCo': 'Citron de Provence',

 'nomSc': 'Gonepteryx cleopatra', 'taille': 30},

 {'num': 460, 'nomCo': 'Paon-du-jour',

 'nomSc': 'Aglais io', 'taille': 6},

 {'num': 461, 'nomCo': 'Machaon',

 'nomSc': 'Papilio machaon', 'taille': 85},

 {'num': 462, 'nomCo': 'Petite Tortue',

 'nomSc': 'Aglais urticae', 'taille': 50},

 {'num': 463, 'nomCo': 'Robert-le-Diable',

 'nomSc': 'Polygonia c-album', 'taille': 25}

]

Le but de cette partie est de trier la liste des papillons par ordre croissant de taille et

de classifier une nouvelle espèce photographiée.

La fonction tri_collec renvoie la liste de dictionnaires des papillons triée par ordre

croissant de taille.

 1 def tri_collec(collec):

 2 """Renvoie la collection des papillons triées

 3 par ordre croissant de leur taille.

 4 Paramètre:

 5 collec : liste de dictionnaires des papillons

 6 Renvoie:

 7 liste triée par ordre croissant des tailles

 8 des papillons.

 9 """

10 for i in range(1, len(collec)):

11 pap = collec[i]

12 j = ...

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 18 / 19

13 while j > 0 and collec[j - 1]['taille'] > ...:

14 collec[j] = collec[j - 1]

15 j = ...

16 collec[j] = pap

17 return ...

10. Recopier et compléter les lignes 12, 13, 15 et 17 de la fonction tri_collec.

11. Nommer le tri utilisé.

12. Indiquer, en justifiant, parmi les propositions suivantes quel est le coût en temps
de ce tri, dans le pire cas, pour un tableau de taille n : linéaire, quadratique,
logarithmique ou exponentiel.

L’algorithme des k plus proches voisins est utilisé pour classifier la nouvelle espèce

photographiée.

13. Expliquer brièvement le principe de cet algorithme.

Cette nouvelle espèce montre beaucoup de ressemblance avec l’espèce ‘Aglais io’

mais diffère par la taille et la couleur des motifs des ailes.

Pour vérifier l’hypothèse que la nouvelle espèce est l’espèce ‘Aglais io’ comportant une

mutation génétique, une recherche naïve d’une séquence caractéristique des papillons

‘Aglais io’ est réalisée sur la chaîne d’ADN extraite de la nouvelle espèce. Une chaîne

d’ADN est représentée en Python par une chaine de caractères. Cette recherche utilise

la fonction recherche_seq(seq, chaine) qui renvoie l’indice du premier caractère

de seq si la séquence seq est présente dans la chaîne d’ADN chaine et -1 sinon.

14. Recopier et compléter les lignes 15 et 17 de la fonction recherche_seq.

EducN_MODgyMD7Y2MTYc0Mj5I5MsjAyNT5EwMDQAyMTxU2MYDcgEducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT4EyMTUOxMTkA0MFjgg

25-NSIJ1ME3 Page : 19 / 19

 1 def recherche_seq(seq, chaine):

 2 """Renvoie l'indice du premier caractère de

 3 chaine où commence `seq` si la séquence `seq`

 4 se trouve dans la chaine de caractères chaine,

 5 -1 sinon

 6 Paramètres:

 7 seq : séquence à rechercher

 8 chaine : chaine d'ADN

 9 Renvoie:

10 indice du premier caractère de seq dans

11 la chaine, -1 sinon.

12 """

13 for i in range(len(chaine)-len(seq) + 1):

14 j = 0

15 while j < len(seq) and ...:

16 j += 1

17 if ...:

18 return i

19 return -1

La fonction recherche_BMH(seq, chaine), donnée ci-dessous, implémente

l’algorithme de Boyer-Moore Horspool.

 1 def dico_lettres(seq):

 2 d = {}

 3 for i in range(len(seq)-1):

 4 d[seq[i]] = i

 5 return d

 6

 7 def recherche_BMH(seq, chaine):

 8 decalage = dico_lettres(seq)

 9 i = 0

10 n = len(seq)

11 while i <= len(chaine) - n:

12 j = n-1

13 while j >= 0 and chaine[i + j] == seq[j]:

14 j -= 1

15 if j == -1:

16 return i

17 else:

18 if chaine[i + n - 1] in decalage:

19 i += n - decalage[chaine[i + n-1]] - 1

20 else:

21 i += n

22 return -1

15. Expliquer le principe de cet algorithme et son avantage par rapport à la fonction

naïve recherche_seq.

