BACCALAUREAT GENERAL

EPREUVE D’ENSEIGNEMENT DE SPECIALITE

SESSION 2025

NUMERIQUE ET SCIENCES INFORMATIQUES

JOUR 2

Durée de I'épreuve : 3 heures 30
L'usage de la calculatrice n’est pas autorisé.

Deés que ce sujet vous est remis, assurez-vous qu'il est complet.

Ce sujet comporte 19 pages numérotées de 1/19 a 19/19.

Le sujet est compose de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ2AS1 Page:1/19

Exercice 1 (6 points)

Cet exercice porte sur les bases de données relationnelles, les requétes SQL, la
programmation en Python et la manipulation de listes.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

e construire des requétes d’interrogation a I'aide de SELECT, FROM, WHERE (avec
les opérateurs logiques AND et OR) et JOIN ... ON;

e construire des requétes d’insertion et de mise a jour a l'aide de UPDATE,
INSERT et DELETE ;

. affiner les recherches a I'aide de DISTINCT et ORDER BY.

Le but de cet exercice est d’établir une prédiction de la météo du jour en utilisant les
observations du jour précédent de plusieurs stations météorologiques voisines.

Partie A

Une version simplifiée des observations peut étre représentée sous forme de tables
dont la description est donnée ci-dessous. Les clés primaires ont été soulignées et les
clés étrangéres sont indiquées par un # :

station observation
idStat : INT idObs : INT
nom : TEXT L——| #idstat : INT
latitude : REAL date : TEXT('AAAAMMJJHH’)
longitude : REAL precip : REAL
hauteur : REAL forceVent : REAL
dirVent : INT
temp : REAL

Figure 1. Tables

Dans cette partie, on considere les observations météorologiques de la Nouvelle
Calédonie.

La table station contient I'identifiant idStat, le nom nom et les coordonnées
géographiques de toutes les stations météorologiques.

La table observation contient I'identifiant 1dStat de I'observation, la date de
'observation date, la hauteur de précipitation precip, la force du vent forceVent,
la direction du vent dirVent et la température temp heure par heure de toutes les
stations.

25-NSIJ2AS1 Page:2/19

Extrait table station
idStat nom latitude longitude hauteur
98818001 NOUMEA | -22.276000 166.452833 69
98818002 | MAGENTA | -22.260333 166.473667 3
Extrait de la table observation
1dObs | 1dStat date precip | forceVent | dirVent | temp
123456 | 9881800 | 202312312 0.0 5.7 260 24.4
1 1
123457 | 9881800 | 202312312 0.0 5.5 260 24.4
1 2
123458 | 9881800 | 202312312 0.2 5.5 250 24.1
1 3
123459 | 9881800 | 202301010 0.0 4.7 260 24.1
2 0
123460 | 9881800 | 202301010 1.4 3.5 80 23.5
2 1
123461 | 9881800 | 202301010 0.4 2.1 190 23.4
2 2
123462 | 9881800 | 202301010 0.2 1.7 330 23.4
2 3
123463 | 9881800 | 202312312 0.1 1.8 310 22.7
2 2

1. Donner le résultat de la requéte ci-dessous en considérant les extraits de table

fournis.

25-NSI1J2AS1

Page :3/19

SELECT nom
FROM station
WHERE latitude = -22.276000 AND longitude = 166.452833

2. Ecrire une requéte permettant d’obtenir le nom de toutes les stations
météorologiques triées par ordre alphabétique.

En SQL, la fonction d’agrégation COUNT permet de compter le nombre
d’enregistrements dans une table.

Pour connaitre le nombre de lignes totales dans une colonne, la syntaxe est la
suivante :

SELECT COUNT(nom_colonne)
FROM table

Par exemple pour compter le nombre de stations météorologiques de la Nouvelle
Calédonie, la requéte est la suivante :

SELECT COUNT(idStat)
FROM station

Dans la table observation, les relevés météorologiques sont effectués au méme
moment pour toutes les stations (date identique). Ainsi, chaque station a le méme
nombre de releveés.

3. Ecrire une requéte permettant d’obtenir la force et la direction du vent a
BOURAKE le 2 janvier 2023 a 14h.

4. Ecrire une requéte permettant d’obtenir le nombre total de relevés en Nouvelle
Calédonie.

On souhaite regrouper toutes les informations dans une seule table meteo.

5. Ecrire le schéma relationnel de la table meteo en supprimant les données
hauteur, precip, forceVent etdirVent.

Partie B

Les données collectées sont stockées dans un unique fichier texte au format csv
(Comma Separated Values, valeurs séparées par des virgules). Le module Python
csv implémente des classes pour lire et écrire des données tabulaires au format csv.

On fournit ci-dessous un extrait du fichier observations.csv qui donne heure par
heure les précipitations en millimétre, la force du vent en metre par seconde et la
direction du vent en degré (de 0 a 360 degrés) ainsi que la température en degré
Celsius de la journée du 01/01/2024 pour toutes les stations méteorologiques de
Nouvelle Calédonie :

25-NSIJ2AS1 Page :4/19

observations.csv . +

Fichier Medifier Affichage b

ID_STATION,NOM STATION,LATITUDE,LONGITUDE,ALTITUDE,AAAAMMIIH
98801001,BELEP AEROD.,-19.719833,163.661006,88,2024010100,0.
98801001,BELEP AEROD.,-19.719833,163.661006,388,2024010101,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,20240108162,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,20240108163,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,2024010104,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,20240108165,0.

H,PRECIPITATION, FORCE_VENT,DIR_VENT,TEMPERATURE
a
a,
a
a
a
a
98801001,BELEP AEROD.,-19.719833,163.661000,88,2024010106,0.0,
e
e
e
e
6
e
A

E
.0,80,25.7
.5,80,25.

8,8@,26.

»

9,99,27.
.4,90,29.
.2,80,30.
.3,80,29.
.9,90,28.

»
98801001,BELEP AEROD.,-19.719833,163.661006,88,20240101038,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,2024010109,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,2024010110,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,2024010111,0.
98801001,BELEP AEROD.,-19.719833,163.661006,88,2024010112,0. .9,90,30.
QRREATAART RFIFP AFRAND -14 714833 1A3 ARTARR RR 2A24A1A113 A L oan 3

Ln 27, Col 62 B3607 caractéres 100% Windows (CRLF) UTF-8

>
>
>
>
>
>
98801001,BELEP AEROD.,-19.719833,163.661006,88,20240108107,0.
>
>
>
>
>

TONNO U R R WD $= S
oo
[}
)
%)
[=]
DN WUV RNV WO W R R W

Figure 2. Extrait fichier observations.csv
Source : d’aprés meteo.data.gouv

Pour la suite de I'exercice, on dispose du code Python donné en annexe ainsi que de
la documentation suivante :

DOCUMENTATION :

« with open("mon_Tfichier.csv®, "r*) as csvfile, ouvre le fichier
mon_fichier.csv en mode lecture (r) ;

» csv.reader(csvfile, delimiter=", "), renvoie un objet lecteur, qui
itérera sur les lignes de 'objet csvfi le donné. Chaque ligne lue depuis le
fichier csv est renvoyée comme une liste de chaines de caracteres.

Dans la console, on saisit la suite d’instructions suivante :

>>>liste _obs = creation_liste_obs("observations.csv®)

>>>liste _obs = supp_champs(liste_obs)

>>>transtype(liste_obs)

>>>liste_obs[O0]

[98801001, "BELEP AEROD.", -19.719833, 163.661, 88, 2024010100,
0.0, 5.0, 80, 25.7]

6. Expliquer cette liste de commande et le résultat obtenu.

Dans la suite de I'exercice, la variable 1iste_obs est initialisée avec les valeurs du
fichier observations.csv.

La fonction distance renvoie la distance entre deux points définis par leur latitude et
leur longitude. Cette fonction utilise des fonctions du module Python math.

7. Donner la ligne de commande nécessaire a l'utilisation du module Python math.

On rappelle les informations relatives a une observations sont données dans l'ordre
suivant :

25-NSIJ2AS1 Page :5/19

ID_STATION,NOM_STATION, LATITUDE,LONGITUDE ,ALTITUDE ,AAAAMMJJHH , P
RECIPITATION,FORCE_VENT ,DIR_VENT, TEMPERATURE

8. Compléter les lignes 40 et 41 de la fonction coord, qui prend en parametres
une liste d’'observations I _obs et un nom de station stat_ref, et qui renvoie
un tuple composeé de sa latitude et sa longitude.

On considére la fonction liste_stations qui prend en parametres une liste
d’observations 1_obs, un nom de station stat_ref et un flottant dist et qui renvoie
la liste des identifiants 1D_STATION des stations données dans la liste 1 _obs situées
a une distance inférieure a dist de la station de référence stat_ref.

9. Ecrire un algorithme en pseudo-code de la fonction liste_stations.

10. Ecrire une fonction nettoyage qui prend en paramétres une liste
d’observations 1 _obs et station de référence stat_ref (nom de la station),
et qui renvoie la liste des températures des stations données dans la liste
d’observations 1 _obs situées a une distance inférieure a 2000 unités de la
station de référence stat_ref.

11. Ecrire la fonction moyenne qui calcule et renvoie la moyenne de toutes les
valeurs de type Float contenues dans la liste passée en parameétre.

On considere maintenant le fichier observations2.csv donnant heure par heure
les observations de la journée du 01/01/2024 pour toutes les stations météorologiques
de France.

12. Donner les commandes permettant d’obtenir la moyenne des températures des
stations situées a moins de 2000 unités de la station Paris_11 le 1°" janvier
2024.

ANNEXE

1 import csv

2
3 def creation_liste _obs(fichier) :

4 liste obs=[]

5 with open(fichier,"r") as csvfile:

6 fic=csv.reader(csvfile,delimiter=",%)
7 for ligne in fic:

8 liste _obs.append(ligne)

9 return liste obs

11 def supp_champs(L) :
12 res = []
13 for 1 1In range(l,len(L)):

14 res.append(L[1])
15 return res
16

17 def transtype(lL):

25-NSIJ2AS1 Page :6/19

18 1=0
19 while 1 < len(L):
20 L[] = [int(LLi1[01),

21 LEiT[1],
22 float(LLi1[2]),
23 float(L[i][3D),

24 int(LLiT[4D),
25 int(L[iT[5D),

26 float(L[1][6]),

27 float(L[i1[7]1).,

28 int(L[i]1[8D),

29 float(L[1]1[9D]

30 =i +1

31

32 def distance(pl, p2):

33 """Renvoie la distance entre deux points définis par leur

latitude et leur longitude. pl et p2 sont des tuples
(latitude, longitude)™ "
34 # Cette fonction n"est pas a compléter

35
36 def coord(l_obs , stat ref):
37 """Renvoie la latitude et la longitude données dans la

liste d’observation 1_obs de la station stat_ref"""
38 # Cette fonction est a compléter a la question 8.
39 for obs in l_obs :

40 it ...

41 return ...,...

42

43 def liste_stations(l_obs, stat ref, dist):

44 """'Renvoie la liste des identifiants ID _STATION des

stations données dans la liste | obs situées a une distance
inférieure a dist de la station de référence stat ref'™
45 # Cette fonction n"est pas a compléter

46
47 def nettoyage(l _obs, stat ref):
48 """Renvoie la liste des températures des stations données

dans la liste d’observations 1 _obs situées a une distance
inférieure a 2000 unités de la station de référence
stat_ref."""

49 # Cette fonction est a compléter a la question 10.

50

51 def moyenne(L):

52 v Calcule et renvoie la moyenne de tous les nombres
contenus dans la liste passée en paramétre. L est une liste de
flottants.""""

53 # Cette fonction est a compléter a la question 11.

25-NSIJ2AS1 Page:7/19

Exercice 2 (6 points)

Cet exercice porte sur la structure de pile, la programmation objet et I'algorithmique.

Défi Tubes est un jeu a un joueur. Le joueur dispose de 4 tubes. Chaque tube peut
contenir de 0 a 3 phases. Chaque phase posséde une couleur. Il y a 3 couleurs
possibles. On peut s'imaginer ces phases comme des palets de couleur dans le tube.
Pour modéliser les couleurs, on utilisera les entiers 1, 2 et 3. Lorsqu’un tube contient
0 phase, on dit que le tube est vide. Lorsqu’il en a 3, on dit qu’il est plein. Lorsqu’un
tube n’est pas vide, sa derniére couleur est la couleur de sa phase supérieure.

l derniere
-+
couleur

phases —r 1
.

Figure 1. Exemple de tube.

Le jeu Défi Tube consiste a verser successivement la derniére couleur des tubes dans
les autres tubes avec les contraintes suivantes :

e 0on ne peut rien verser dans un tube plein ;

* pour verser un tube 1 dans un tube 2, il faut que la derniere couleur du tube 1
soit la méme que celle du tube 2 ou que le tube 2 soit vide. Dans ces deux cas,
on retire la derniere couleur du tube 1 pour gu’elle devienne la derniere couleur
du tube 2. On réitére cela tant que la derniére couleur du tube 1 est la méme
et que le tube 2 n’est pas plein.

Le jeu se termine lorsque 3 des 4 tubes sont pleins et que leurs 3 phases sont de
méme couleur.

Les figures 2, 3, 4 et 5 ci-aprés représentent un exemple de partie du jeu Défi Tube.

25-NSIJ2AS1 Page :8/19

3 3 2
1 3 2
tube 1 tube 2 tube 3
Figure 2. Etat initial du jeu.
3
3 2
1 3 2
tube 1 tube 2 tube 3
Figure 3. On a versé le tube 1 dans le tube 2.
1 3
1 3 2
1 3 2
tube 1 tube 2 tube 3
Figure 4. On a verseé le tube 4 dans le tube 1.
1 3
1 3
1 3
tube 1 tube 2 tube 3

Figure 5. On a versé le tube 3 dans le tube 4.

A la figure 5, la partie est terminée.

25-NSI1J2AS1

tube 4

tube 4

tube 4

Page:9/19

1. Donner un exemple d’une autre séquence de versements qui aurait permis de
terminer le jeu en partant de la situation de la figure 4.

Ainsi le déroulement du jeu n’est pas unique.
Partie A : Les tubes

Pour modéliser le jeu Défi Tube, chaque tube sera représenté par une pile finie de
taille maximale 3. Les tubes sont modélisés par des objets de la classe tube dont le
code est donné ci-dessous.

1 class tube:

2 def __init_ (self):

3 self.taille = 0

4 self.contenu = [O, O, O]

5

6 def est_vide(self):

7 return self.taille ==

8

9 def empiler(self, couleur):

10 if self.taille < 3:

11 self.contenu[self.taille] = couleur
12 self.taille = self.taille + 1
13

14 def depiler(self):

15 if self.taille > O:

16 self.taille = self_taille - 1
17 couleur = self.contenu[...]
18 self.contenu[self._taille] = 0
19 return
20 else:
21 return

Chaque instance de la classe tube a deux attributs :

« lattribut tail le représente le nombre d’éléments non nuls dans le tube;

» lattribut contenu représente la liste (de taille 3) des éléments du tube.
Lorsqu’une phase n’est pas vide, elle contiendra une couleur 1, 2, ou 3.
Lorsqu’une phase est vide, sa valeur est 0.

Par exemple, le tube suivant :

25-NSIJ2AS1 Page : 10/19

1

Figure 6. tubel

sera modélisé avec la classe tube par le code :

1t = tube()
2 t.taille = 2
3 t.contenu = [1, 3, 0]

2.

Expliquer ce qu’est la structure de pile en précisant ce que sont les méthodes
empiler etdepiler.

Expliquer les lignes 11 et 12 du code de la classe tube.

Recopier et compléter le code de la méthode depi ler précédente. Lorsque le
tube est vide, la méthode depi ler doit renvoyer -1.

Ecrire une méthode est_plein de la classe tube. Cette méthode renvoie
True si le tube est plein et Fal se si le tube n’est pas plein.

Ecrire une méthode est_homogene de la classe tube qui renvoie True sile
tube est plein et si son contenu est composé de trois fois la méme couleur, et
qui renvoie False sinon.

Ecrire une méthode derniere_couleur de la classe tube qui renvoie le
numéro de la derniere couleur du tube. Si le tube est vide, la méthode renverra
la valeur -1.

Le code incomplet d’'une méthode verser de la classe tube est donné ci-dessous :

1 def verser(self, other):

2
3
4

8.

while ...
couleur = self._depiler()
other.empiler(couleur)

Recopier et compléter le code de cette méthode verser afin de verser
l'instance sel T de la classe tube dans l'instance other. On veillera a vérifier
toutes les conditions nécessaires au bon déroulement de cette opération.

25-NSI1J2AS1 Page :11/19

Partie B : Le jeu

Pour modéliser le jeu, on appellera état du jeu une liste de 4 tubes. Le code suivant
permet de représenter 'état de la figure 2.

1 tubel = tube()

2 tubel.contenu = [1, 3, 0]
3 tubel.taille = 2

4 tube2 = tube()

5 tube2.contenu = [3, 3, O]
6 tube2.taille = 2

7 tube3d = tube()

8 tube3.contenu = [2, 2, O]
9 tube3d.taille = 2

10 tubed4 = tube()

11 tubed4.contenu = [1, 1, 2]
12 tube4.taille = 3

13 etat = [tubel, tube2, tube3, tube4]

9. En utilisant la méthode verser et la variable etat représentant la figure 2,
écrire un code permettant de faire passer la variable etat de la représentation
en figure 2 a celle de la figure 3

10. Ecrire une fonction gagne qui prend comme argument un état et qui renvoie
True si la partie est terminée et Fal se sinon.

25-NSI1J2AS1 Page : 12 /19

Exercice 3 (8 points)

Cet exercice porte sur la programmation Python, les graphes et les réseaux.

Partie A

On considére un réseau d’antennes radios, représenté dans la figure 1, ou les disques
représentent la zone d’émission de chaque antenne. Pour éviter toute interférence,
deux antennes “proches” géographiqguement doivent émettre a des fréquences
différentes.

@

Figure 1. Réseau d’antennes

On modélise ainsi le réseau d’antennes par un graphe non orienté, appelé graphe
d’interférences, dont les sommets sont les antennes numérotées de 1 a n, n étant un
entier naturel supérieur ou égal a 1, et les sommets sont reliés par une aréte si leurs
zones d’émission s’intersectent.

Soit G le graphe associé au réseau d’antennes précédent :

25-NSIJ2AS1 Page : 13/19

Figure 2. Modélisation du réseau sous la forme d’'un graphe G

Les fréquences a allouer sont associées a des couleurs comme rouge, vert, jaune,
bleu, etc.
Pour éviter les interférences, la coloration doit étre une coloration propre : deux
sommets adjacents ne peuvent recevoir la méme couleur.

Dans cet exercice on représente le graphe G par un dictionnaire de listes d’adjacence
dont les clefs sont les sommets de type int et les valeurs sont des listes de voisins
du sommet clef, chaque liste contenant des éléments de type int.

1. Donner la valeur associée a la clé 1 dans ce dictionnaire.

2. Ecrire une fonction voisins, qui prend en parameétres un dictionnaire et un
entier, telle que voisins(graphe, k) renvoie une liste contenant les voisins
du sommet k dans le graphe qui est modélisé par le dictionnaire de listes
d’adjacence graphe.

Exemple :

>>> voisins(G, 2)
[1, 3, 4, 5]

L'algorithme de Welsh et Powell consiste a colorer séquentiellement le graphe en
visitant les sommets par ordre de degrés décroissants. Le degré d’'un sommet d’un
graphe non orienté est le nombre d'arétes dont le sommet est une extrémite.
L'idée est que les sommets ayant beaucoup de voisins sont plus difficiles a colorer : il
faut les colorier en premier.

3. Ecrire la fonction degre_du_sommet qui prend en paramétres un graphe
modélisé par le dictionnaire de listes d’adjacence graphe et un sommet
sommet et qui renvoie le degré du sommet sommet.

25-NSI1J2AS1 Page : 14 /19

Exemple :

>>> degre_du_sommet(G, 2)
4

Ecrire la fonction degre_sommets qui prend en paramétre un graphe modélisé
par le dictionnaire de listes d’adjacence graphe et qui renvoie la liste des tuples
(sommet,degre) de chague sommet du graphe.

Exemple :

>>> degre_sommets(G)
L1, 2), (2, 4), (B, 3), (4, 4, (5, 5), (6, 2), (7, 1),
(3. 2), (9. DI

On définit la fonction tri__liste ci-aprés :

1 def tri_liste(l_deg):

CoO~NOUDWN

10
11
12
13
14
15

"] _deg : liste de tuples (sommets,degré).
Trie la liste | _deg par degrés décroissants
for 1 In range(len(l_deg)+1):

som_max = i
1 _deg[i][1]

deg_max
for J in range(i+l, len(l_deg)):
if deg max < 1 _deg[j]ll1]:

J
I_deg[j]1l[1]
temp = 1 _deg[i]

1 _deg[i]_= 1_deg[som_max]
1 _deg[som _max] = temp
return 1 _deg

A l'exécution, tri_liste([(1, 2), (2, 2), (3, 3)]) renvoie l'erreur
suivante :

IndexError: list index out of range

5.
6.

Commenter puis corriger cette erreur.

Choisir parmi les tris proposés celui qui correspond a la fonction tri_liste :
tri par insertion, tri par sélection, tri fusion, tri bulle.

Ecrire une fonction tri_sommets qui prend en parameétre un graphe graphe
et qui ne renvoie que la liste des sommets du graphe graphe triés par degré
décroissant. On pourra utiliser les fonctions définies dans les questions
précédentes.

25-NSIJ2AS1 Page : 15/19

Exemple :

>>> tri_sommets(G)
[5, 2, 4, 3, 1, 6, 8, 7,9]

On suppose que le graphe est planaire, c’est-a-dire qu’il existe une représentation de
ce graphe dans un plan pour laguelle les arétes ne se croisent pas, et on définit la
fonction coloration ci-apres.

1 def coloration(g):

2 v Renvoie une coloration du graphe g
3 # Algorithme de Welsh-Powell, limité a 4 couleurs
4
5 couleur = ["Rouge®, "Bleu®, "Vert®, "Jaune”]
6 coloration_sommets = {}
7 for s_1 iIn g:
8 coloration_sommets[s_i1] = None
9 for s_1 in tri_sommets(g):
10 couleurs_voisins_s 1 = [coloration_sommets[s_j] for
s_j in voisins(g, s_i)]
11 k=0
12 while couleur[k] in couleurs_voisins_s i
13 k =k +1
14 coloration_sommets[s_i1] = couleur[k]
15 return coloration_sommets
8. Donner le type et le contenu de la variable coloration_sommets de la
fonction coloration_graphe ci-dessus pour le graphe G, aprés execution de
la boucle des lignes 7 et 8.
9. Recopier et compléter le retour de la fonction coloration appliquée au
graphe G donné plus haut.
{1: "vert*, 2: ..., ...}
Partie B

On s’intéresse maintenant a un réseau informatique.

25-NSIJ2AS1 Page : 16 /19

{Réseau local L2)
{ Réseau \ 1Gb/s ‘ 100 Mb/s
\\\“ a— T

local L1

10 Gh/s 100 Mb/S
S1 / 100 Mb/s 1 Gb/

1 Gb/s
\\\“ wt
>
_ P1 / 100 Mb/s 10 be s
10 Gb/s

s
‘ \\‘\

R7

S2

Figure 3. Réseau entreprise

Dans cette partie, les adresses IP sont composeées de 4 octets, soit 32 bits. Elles sont
notées X1.X2.X3.X4, ou X1, X2, X3 et X4 sont les représentations décimales des 4
octets. La notation X1.X2.X3.X4/n signifie que les n premiers bits de l'adresse IP
représentent la partie « réseau », les bits suivants représentent la partie « héte ».

On fournit les données suivantes concernant le réseau de cette entreprise.

Réseau local L1 :
- Adresse IP de l'ordinateur P1 : 190.12.10.25/24
- S1 : switch

Réseau local L2 :

- Adresse réseau : 12.128.0.0

- Masque de sous réseau : 255.255.0.0
- S2 : switch

- P2 : ordinateur

Extrait de I'arborescence du systeme de fichiers de I'ordinateur P2 :

25-NSI1J2AS1 Page : 17 /19

P e

bin etc home lib
\ —
picky maurice timothee
travail photos fic1.txt importa nt
TP cours photo1.png prog1.py
prog2.py

Figure 4. Arborescence
Extrait du manuel de la commande cp :

[root@localhost ~]# man cp
User Commands

cp - copy files and directories

SYNOPSIS
cp [OPTION]... [-T] SOURCE DEST
cp [OPTION]... SOURCE... DIRECTORY
cp [OPTION]... -t DIRECTORY SOURCE...

DESCRIPTION
Copy SOURCE to DEST, or multiple SOURCE(s) to DIRECTORY.

Figure 5. Manuel de la commande cp

10. Donner une commande en ligne qui permet de copier le fichier progl . py dans
le répertoire TP lorsqu’on se trouve dans le répertoire nommé important.

11. Donner la commande qui permet de vérifier si 'ordinateur P1 est accessible
lorsque I'on travaille sur I'ordinateur P2.

12. Donner une adresse possible pour I'ordinateur P2 du réseau local L2.

Dans le cadre du protocole RIP, le chemin emprunté par les informations est celui qui
aura la distance la plus petite en nombre de sauts.
Dans le cadre du protocole OSPF, le chemin emprunté par les informations est celui
qui aura le codt total minimal.

25-NSIJ2AS1 Page : 18 /19

Extraits des tables de routage :

Routeur Destination Passerelle
R1 R9 R2
R2 R9 R3
R3 R9 RS
R4 R9 R3
RS R9 R4
R6 R9 R4
R7 R9 R5
R8 R9 R9

R9 RO LOCALHOS
T

13. Donner le chemin emprunté par un paquet de données allant de I'ordinateur P1
a l'ordinateur P2, en utilisant I'extrait de la table de routage.

14. Donner le nom du protocole de routage qui semble étre utilisé.
Dans les questions suivantes, on utilise le protocole de routage OSPF.

~ , 108 .
Pour calculer le codt C d’'une liaison, on utilise la formule : C = —p ou BP est la bande
passante en bits par seconde.

15. Calculer les colts pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s.

16. Déterminer la route qui sera empruntée par le paquet de données envoyé de
'ordinateur P1 a I'ordinateur P2, en respectant le protocole OSPF.

25-NSIJ2AS1 Page :19/19

