
25-NSIJ2AS1  Page : 1 / 19 

BACCALAURÉAT GÉNÉRAL 
 

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ 

 

 

SESSION 2025 
 

 

 

NUMÉRIQUE ET SCIENCES INFORMATIQUES 
 

 

JOUR 2 
 

 

Durée de l’épreuve : 3 heures 30 

 

 

L’usage de la calculatrice n’est pas autorisé. 

 

Dès que ce sujet vous est remis, assurez-vous qu’il est complet. 

Ce sujet comporte 19 pages numérotées de 1/19 à 19/19. 

 

 

Le sujet est composé de trois exercices indépendants. 

Le candidat traite les trois exercices. 
 

 

 



25-NSIJ2AS1  Page : 2 / 19 

Exercice 1 (6 points) 

Cet exercice porte sur les bases de données relationnelles, les requêtes SQL, la 
programmation en Python et la manipulation de listes. 

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour : 

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec 
les opérateurs logiques AND et OR) et JOIN ... ON ; 

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE, 
INSERT et DELETE ; 

• affiner les recherches à l’aide de DISTINCT et ORDER BY. 

Le but de cet exercice est d’établir une prédiction de la météo du jour en utilisant les 
observations du jour précédent de plusieurs stations météorologiques voisines. 

Partie A 

Une version simplifiée des observations peut être représentée sous forme de tables 
dont la description est donnée ci-dessous. Les clés primaires ont été soulignées et les 
clés étrangères sont indiquées par un # : 

 

Figure 1. Tables 

Dans cette partie, on considère les observations météorologiques de la Nouvelle 
Calédonie. 

La table station contient l’identifiant idStat, le nom nom et les coordonnées 
géographiques de toutes les stations météorologiques. 
La table observation contient l’identifiant idStat de l’observation, la date de 
l’observation date, la hauteur de précipitation precip, la force du vent forceVent, 
la direction du vent dirVent et la température temp heure par heure de toutes les 
stations. 



25-NSIJ2AS1  Page : 3 / 19 

Extrait table station 

idStat nom latitude longitude hauteur 

… … ... ... … 

98818001 NOUMEA -22.276000 166.452833 69 

98818002 MAGENTA -22.260333 166.473667 3 

… … ... ... … 

 

Extrait de la table observation 

idObs idStat date precip forceVent dirVent temp 

… … ... …  ... … … 

123456 9881800
1 

202312312
1 

0.0 5.7 260 24.4 

123457 9881800
1 

202312312
2 

0.0 5.5 260 24.4 

123458 9881800
1 

202312312
3 

0.2 5.5 250 24.1 

123459 9881800
2 

202301010
0 

0.0 4.7 260 24.1 

123460 9881800
2 

202301010
1 

1.4 3.5 80 23.5 

123461 9881800
2 

202301010
2 

0.4 2.1 190 23.4 

123462 9881800
2 

202301010
3 

0.2 1.7 330 23.4 

123463 9881800
2 

202312312
2 

0.1 1.8 310 22.7 

… … ... … ... … … 

1. Donner le résultat de la requête ci-dessous en considérant les extraits de table 
fournis. 



25-NSIJ2AS1  Page : 4 / 19 

  SELECT nom 
FROM station 
WHERE latitude = -22.276000 AND longitude = 166.452833 

2. Écrire une requête permettant d’obtenir le nom de toutes les stations 
météorologiques triées par ordre alphabétique. 

En SQL, la fonction d’agrégation COUNT permet de compter le nombre 
d’enregistrements dans une table. 
Pour connaître le nombre de lignes totales dans une colonne, la syntaxe est la 
suivante : 

SELECT COUNT(nom_colonne) 
FROM table 

Par exemple pour compter le nombre de stations météorologiques de la Nouvelle 
Calédonie, la requête est la suivante : 

SELECT COUNT(idStat) 
FROM station 

Dans la table observation, les relevés météorologiques sont effectués au même 
moment pour toutes les stations (date identique). Ainsi, chaque station a le même 
nombre de relevés. 

3. Écrire une requête permettant d’obtenir la force et la direction du vent à 
BOURAKE le 2 janvier 2023 à 14h. 

4. Écrire une requête permettant d’obtenir le nombre total de relevés en Nouvelle 
Calédonie. 

On souhaite regrouper toutes les informations dans une seule table meteo. 

5. Écrire le schéma relationnel de la table meteo en supprimant les données 
hauteur, precip, forceVent et dirVent. 

Partie B 

Les données collectées sont stockées dans un unique fichier texte au format csv 
(Comma Separated Values, valeurs séparées par des virgules). Le module Python 
csv implémente des classes pour lire et écrire des données tabulaires au format csv. 

On fournit ci-dessous un extrait du fichier observations.csv qui donne heure par 
heure les précipitations en millimètre, la force du vent en mètre par seconde et la 
direction du vent en degré (de 0 à 360 degrés) ainsi que la température en degré 
Celsius de la journée du 01/01/2024 pour toutes les stations météorologiques de 
Nouvelle Calédonie : 



25-NSIJ2AS1  Page : 5 / 19 

 

Figure 2. Extrait fichier observations.csv 

Source : d’après meteo.data.gouv 

Pour la suite de l’exercice, on dispose du code Python donné en annexe ainsi que de 
la documentation suivante : 

DOCUMENTATION : 

• with open('mon_fichier.csv', 'r') as csvfile, ouvre le fichier 
mon_fichier.csv en mode lecture (r) ; 

• csv.reader(csvfile, delimiter=','), renvoie un objet lecteur, qui 
itérera sur les lignes de l’objet csvfile donné. Chaque ligne lue depuis le 
fichier csv est renvoyée comme une liste de chaînes de caractères. 

Dans la console, on saisit la suite d’instructions suivante : 

>>>liste_obs = creation_liste_obs('observations.csv') 
>>>liste_obs = supp_champs(liste_obs) 
>>>transtype(liste_obs) 
>>>liste_obs[0] 
[98801001, 'BELEP AEROD.', -19.719833, 163.661, 88, 2024010100, 
0.0, 5.0, 80, 25.7] 

6. Expliquer cette liste de commande et le résultat obtenu. 

Dans la suite de l’exercice, la variable liste_obs est initialisée avec les valeurs du 
fichier observations.csv. 

La fonction distance renvoie la distance entre deux points définis par leur latitude et 
leur longitude. Cette fonction utilise des fonctions du module Python math. 

7. Donner la ligne de commande nécessaire à l’utilisation du module Python math. 

On rappelle les informations relatives à une observations sont données dans l’ordre 
suivant : 



25-NSIJ2AS1  Page : 6 / 19 

ID_STATION,NOM_STATION,LATITUDE,LONGITUDE,ALTITUDE,AAAAMMJJHH,P
RECIPITATION,FORCE_VENT,DIR_VENT,TEMPERATURE 

8. Compléter les lignes 40 et 41 de la fonction coord, qui prend en paramètres 
une liste d’observations l_obs et un nom de station stat_ref, et qui renvoie 
un tuple composé de sa latitude et sa longitude. 

On considère la fonction liste_stations qui prend en paramètres une liste 
d’observations l_obs, un nom de station stat_ref et un flottant dist et qui renvoie 
la liste des identifiants ID_STATION des stations données dans la liste l_obs situées 
à une distance inférieure à dist de la station de référence stat_ref. 

9. Écrire un algorithme en pseudo-code de la fonction liste_stations. 

10. Écrire une fonction nettoyage qui prend en paramètres une liste 
d’observations l_obs et station de référence stat_ref (nom de la station), 
et qui renvoie la liste des températures des stations données dans la liste 
d’observations l_obs situées à une distance inférieure à 2000 unités de la 
station de référence stat_ref. 

11. Écrire la fonction moyenne qui calcule et renvoie la moyenne de toutes les 
valeurs de type float contenues dans la liste passée en paramètre. 

On considère maintenant le fichier observations2.csv donnant heure par heure 
les observations de la journée du 01/01/2024 pour toutes les stations météorologiques 
de France. 

12. Donner les commandes permettant d’obtenir la moyenne des températures des 
stations situées à moins de 2000 unités de la station Paris_11 le 1er janvier 
2024. 

ANNEXE 

 1 import csv 
 2  
 3 def creation_liste_obs(fichier) : 
 4   liste_obs=[] 
 5   with open(fichier,'r') as csvfile: 
 6     fic=csv.reader(csvfile,delimiter=',') 
 7     for ligne in fic: 
 8       liste_obs.append(ligne) 
 9   return liste_obs 
10  
11 def supp_champs(L) : 
12   res = [] 
13   for i in range(1,len(L)): 
14     res.append(L[i]) 
15   return res 
16  
17 def transtype(L): 



25-NSIJ2AS1  Page : 7 / 19 

18   i=0 
19   while i < len(L): 
20     L[i] = [int(L[i][0]), 
21     L[i][1], 
22     float(L[i][2]), 
23     float(L[i][3]), 
24     int(L[i][4]), 
25     int(L[i][5]), 
26     float(L[i][6]), 
27     float(L[i][7]), 
28     int(L[i][8]), 
29     float(L[i][9])] 
30     i = i + 1 
31  
32 def distance(p1, p2): 
33   """Renvoie la distance entre deux points définis par leur 
latitude et leur longitude. p1 et p2 sont des tuples 
(latitude,longitude)""" 
34   # Cette fonction n'est pas à compléter 
35  
36 def coord(l_obs , stat_ref): 
37   """Renvoie la latitude et la longitude données dans la 
liste d’observation l_obs de la station stat_ref""" 
38   # Cette fonction est à compléter à la question 8. 
39   for obs in l_obs : 
40     if ... : 
41       return ...,... 
42  
43 def liste_stations(l_obs, stat_ref, dist): 
44   """Renvoie la liste des identifiants ID_STATION des 
stations données dans la liste l_obs situées à une distance 
inférieure à dist de la station de référence stat_ref""" 
45   # Cette fonction n'est pas à compléter 
46  
47 def nettoyage(l_obs, stat_ref): 
48   """Renvoie la liste des températures des stations données 
dans la liste d’observations  l_obs situées à une distance 
inférieure à 2000 unités de la station de référence 
stat_ref.""" 
49   # Cette fonction est à compléter à la question 10. 
50  
51 def moyenne(L): 
52   """Calcule et renvoie la moyenne de tous les nombres 
contenus dans la liste passée en paramètre. L est une liste de 
flottants.""" 
53   # Cette fonction est à compléter à la question 11. 

  



25-NSIJ2AS1  Page : 8 / 19 

Exercice 2 (6 points) 

Cet exercice porte sur la structure de pile, la programmation objet et l’algorithmique. 

Défi Tubes est un jeu à un joueur. Le joueur dispose de 4 tubes. Chaque tube peut 
contenir de 0 à 3 phases. Chaque phase possède une couleur. Il y a 3 couleurs 
possibles. On peut s’imaginer ces phases comme des palets de couleur dans le tube. 
Pour modéliser les couleurs, on utilisera les entiers 1, 2 et 3. Lorsqu’un tube contient 
0 phase, on dit que le tube est vide. Lorsqu’il en a 3, on dit qu’il est plein. Lorsqu’un 
tube n’est pas vide, sa dernière couleur est la couleur de sa phase supérieure. 

 

Figure 1. Exemple de tube. 

Le jeu Défi Tube consiste à verser successivement la dernière couleur des tubes dans 
les autres tubes avec les contraintes suivantes : 

• on ne peut rien verser dans un tube plein ; 
• pour verser un tube 1 dans un tube 2, il faut que la dernière couleur du tube 1 

soit la même que celle du tube 2 ou que le tube 2 soit vide. Dans ces deux cas, 
on retire la dernière couleur du tube 1 pour qu’elle devienne la dernière couleur 
du tube 2. On réitère cela tant que la dernière couleur du tube 1 est la même 
et que le tube 2 n’est pas plein. 

Le jeu se termine lorsque 3 des 4 tubes sont pleins et que leurs 3 phases sont de 
même couleur. 

Les figures 2, 3, 4 et 5 ci-après représentent un exemple de partie du jeu Défi Tube. 



25-NSIJ2AS1  Page : 9 / 19 

 

Figure 2. État initial du jeu. 

 

Figure 3. On a versé le tube 1 dans le tube 2. 

 

Figure 4. On a versé le tube 4 dans le tube 1. 

 

Figure 5. On a versé le tube 3 dans le tube 4. 

À la figure 5, la partie est terminée. 



25-NSIJ2AS1  Page : 10 / 19 

1. Donner un exemple d’une autre séquence de versements qui aurait permis de 
terminer le jeu en partant de la situation de la figure 4. 

Ainsi le déroulement du jeu n’est pas unique. 

Partie A : Les tubes 

Pour modéliser le jeu Défi Tube, chaque tube sera représenté par une pile finie de 
taille maximale 3. Les tubes sont modélisés par des objets de la classe tube dont le 
code est donné ci-dessous. 

 1 class tube: 
 2     def __init__(self): 
 3         self.taille = 0 
 4         self.contenu = [0, 0, 0] 
 5          
 6     def est_vide(self): 
 7         return self.taille == 0 
 8      
 9     def empiler(self, couleur): 
10         if self.taille < 3: 
11             self.contenu[self.taille] = couleur 
12             self.taille = self.taille + 1 
13      
14     def depiler(self): 
15         if self.taille > 0: 
16             self.taille = self.taille - 1 
17             couleur = self.contenu[...]  
18             self.contenu[self.taille] = 0 
19             return ...  
20         else: 
21             return ...  

Chaque instance de la classe tube a deux attributs : 

• l’attribut taille représente le nombre d’éléments non nuls dans le tube; 

• l’attribut contenu représente la liste (de taille 3) des éléments du tube. 
Lorsqu’une phase n’est pas vide, elle contiendra une couleur 1, 2, ou 3. 
Lorsqu’une phase est vide, sa valeur est 0. 

Par exemple, le tube suivant : 



25-NSIJ2AS1  Page : 11 / 19 

 

Figure 6. tube1 

sera modélisé avec la classe tube par le code : 

1 t = tube() 
2 t.taille = 2 
3 t.contenu = [1, 3, 0] 

2. Expliquer ce qu’est la structure de pile en précisant ce que sont les méthodes 
empiler et depiler. 

3. Expliquer les lignes 11 et 12 du code de la classe tube. 

4. Recopier et compléter le code de la méthode depiler précédente. Lorsque le 
tube est vide, la méthode depiler doit renvoyer -1. 

5. Écrire une méthode est_plein de la classe tube. Cette méthode renvoie 
True si le tube est plein et False si le tube n’est pas plein. 

6. Écrire une méthode est_homogene de la classe tube qui renvoie True si le 
tube est plein et si son contenu est composé de trois fois la même couleur, et 
qui renvoie False sinon. 

7. Écrire une méthode derniere_couleur de la classe tube qui renvoie le 
numéro de la dernière couleur du tube. Si le tube est vide, la méthode renverra 
la valeur -1. 

Le code incomplet d’une méthode verser de la classe tube est donné ci-dessous : 

1 def verser(self, other): 
2     while ...  
3         couleur = self.depiler() 
4         other.empiler(couleur) 

8. Recopier et compléter le code de cette méthode verser afin de verser 
l’instance self de la classe tube dans l’instance other. On veillera à vérifier 
toutes les conditions nécessaires au bon déroulement de cette opération. 



25-NSIJ2AS1  Page : 12 / 19 

Partie B : Le jeu 

Pour modéliser le jeu, on appellera état du jeu une liste de 4 tubes. Le code suivant 
permet de représenter l’état de la figure 2. 

 1 tube1 = tube() 
 2 tube1.contenu = [1, 3, 0] 
 3 tube1.taille = 2 
 4 tube2 = tube() 
 5 tube2.contenu = [3, 3, 0] 
 6 tube2.taille = 2 
 7 tube3 = tube() 
 8 tube3.contenu = [2, 2, 0] 
 9 tube3.taille = 2 
10 tube4 = tube() 
11 tube4.contenu = [1, 1, 2] 
12 tube4.taille = 3 
13 etat = [tube1, tube2, tube3, tube4] 

9. En utilisant la méthode verser et la variable etat représentant la figure 2, 
écrire un code permettant de faire passer la variable etat de la représentation 
en figure 2 à celle de la figure 3. 

10. Écrire une fonction gagne qui prend comme argument un état et qui renvoie 
True si la partie est terminée et False sinon. 

  



25-NSIJ2AS1  Page : 13 / 19 

Exercice 3 (8 points) 

Cet exercice porte sur la programmation Python, les graphes et les réseaux. 

Partie A 

On considère un réseau d’antennes radios, représenté dans la figure 1, où les disques 
représentent la zone d’émission de chaque antenne. Pour éviter toute interférence, 
deux antennes “proches” géographiquement doivent émettre à des fréquences 
différentes. 

 

Figure 1. Réseau d’antennes 

On modélise ainsi le réseau d’antennes par un graphe non orienté, appelé graphe 
d’interférences, dont les sommets sont les antennes numérotées de 1 à n, n étant un 
entier naturel supérieur ou égal à 1, et les sommets sont reliés par une arête si leurs 
zones d’émission s’intersectent. 

Soit G le graphe associé au réseau d’antennes précédent : 



25-NSIJ2AS1  Page : 14 / 19 

 

Figure 2. Modélisation du réseau sous la forme d’un graphe G 

Les fréquences à allouer sont associées à des couleurs comme rouge, vert, jaune, 
bleu, etc. 
Pour éviter les interférences, la coloration doit être une coloration propre : deux 
sommets adjacents ne peuvent recevoir la même couleur. 

Dans cet exercice on représente le graphe G par un dictionnaire de listes d’adjacence 
dont les clefs sont les sommets de type int et les valeurs sont des listes de voisins 
du sommet clef, chaque liste contenant des éléments de type int. 

1. Donner la valeur associée à la clé 1 dans ce dictionnaire. 

2. Écrire une fonction voisins, qui prend en paramètres un dictionnaire et un 
entier, telle que voisins(graphe, k) renvoie une liste contenant les voisins 
du sommet k dans le graphe qui est modélisé par le dictionnaire de listes 
d’adjacence graphe. 

  Exemple : 

  >>> voisins(G, 2) 
[1, 3, 4, 5] 

L’algorithme de Welsh et Powell consiste à colorer séquentiellement le graphe en 
visitant les sommets par ordre de degrés décroissants. Le degré d’un sommet d’un 
graphe non orienté est le nombre d’arêtes dont le sommet est une extrémité. 
L’idée est que les sommets ayant beaucoup de voisins sont plus difficiles à colorer : il 
faut les colorier en premier. 

3. Écrire la fonction degre_du_sommet qui prend en paramètres un graphe 
modélisé par le dictionnaire de listes d’adjacence graphe et un sommet 
sommet et qui renvoie le degré du sommet sommet. 

   

   



25-NSIJ2AS1  Page : 15 / 19 

  Exemple : 

  >>> degre_du_sommet(G, 2) 
4 

4. Écrire la fonction degre_sommets qui prend en paramètre un graphe modélisé 
par le dictionnaire de listes d’adjacence graphe et qui renvoie la liste des tuples 
(sommet,degre) de chaque sommet du graphe. 

  Exemple : 

  >>> degre_sommets(G) 
[(1, 2), (2, 4), (3, 3), (4, 4), (5, 5), (6, 2), (7, 1), 
(8, 2), (9, 1)] 

On définit la fonction tri_liste ci-après : 

 1 def tri_liste(l_deg): 
 2   """l_deg : liste de tuples (sommets,degré). 
 3   Trie la liste l_deg par degrés décroissants""" 
 4   for i in range(len(l_deg)+1): 
 5     som_max = i 
 6     deg_max = l_deg[i][1] 
 7  
 8     for j in range(i+1, len(l_deg)): 
 9       if deg_max < l_deg[j][1]: 
10         som_max = j 
11         deg_max = l_deg[j][1] 
12     temp = l_deg[i] 
13     l_deg[i] = l_deg[som_max] 
14     l_deg[som_max] = temp 
15   return l_deg 

À l’exécution, tri_liste([(1, 2), (2, 2), (3, 3)]) renvoie l’erreur 
suivante : 

  IndexError: list index out of range 

5. Commenter puis corriger cette erreur. 

6. Choisir parmi les tris proposés celui qui correspond à la fonction tri_liste : 
tri par insertion, tri par sélection, tri fusion, tri bulle. 

7. Écrire une fonction tri_sommets qui prend en paramètre un graphe graphe 
et qui ne renvoie que la liste des sommets du graphe graphe triés par degré 
décroissant. On pourra utiliser les fonctions définies dans les questions 
précédentes. 

   

   

   



25-NSIJ2AS1  Page : 16 / 19 

  Exemple : 

  >>> tri_sommets(G) 
[5, 2, 4, 3, 1, 6, 8, 7,9] 

On suppose que le graphe est planaire, c’est-à-dire qu’il existe une représentation de 
ce graphe dans un plan pour laquelle les arêtes ne se croisent pas, et on définit la 
fonction coloration ci-après. 

 1 def coloration(g): 
 2     """Renvoie une coloration du graphe g""" 
 3     # Algorithme de Welsh-Powell, limité à 4 couleurs 
 4  
 5     couleur = ['Rouge', 'Bleu', 'Vert', 'Jaune'] 
 6     coloration_sommets = {} 
 7     for s_i in g: 
 8         coloration_sommets[s_i] = None 
 9     for s_i in tri_sommets(g): 
10         couleurs_voisins_s_i = [coloration_sommets[s_j] for 
s_j in voisins(g, s_i)] 
11         k = 0 
12         while couleur[k] in couleurs_voisins_s_i : 
13             k = k + 1 
14         coloration_sommets[s_i] = couleur[k] 
15     return coloration_sommets 

8. Donner le type et le contenu de la variable coloration_sommets de la 
fonction coloration_graphe ci-dessus pour le graphe G, après execution de 
la boucle des lignes 7 et 8. 

9. Recopier et compléter le retour de la fonction coloration appliquée au 
graphe G donné plus haut. 

  {1: 'Vert', 2: ..., ...} 

Partie B 

On s’intéresse maintenant à un réseau informatique. 



25-NSIJ2AS1  Page : 17 / 19 

 

Figure 3. Réseau entreprise 

Dans cette partie, les adresses IP sont composées de 4 octets, soit 32 bits. Elles sont 
notées X1.X2.X3.X4, où X1, X2, X3 et X4 sont les représentations décimales des 4 
octets. La notation X1.X2.X3.X4/n signifie que les n premiers bits de l’adresse IP 
représentent la partie « réseau », les bits suivants représentent la partie « hôte ». 

On fournit les données suivantes concernant le réseau de cette entreprise. 

Réseau local L1 : 
- Adresse IP de l’ordinateur P1 : 190.12.10.25/24 
- S1 : switch 

Réseau local L2 : 
- Adresse réseau : 12.128.0.0 
- Masque de sous réseau : 255.255.0.0 
- S2 : switch 
- P2 : ordinateur 

Extrait de l’arborescence du système de fichiers de l’ordinateur P2 : 



25-NSIJ2AS1  Page : 18 / 19 

 

Figure 4. Arborescence 

Extrait du manuel de la commande cp : 

 

Figure 5. Manuel de la commande cp 

10. Donner une commande en ligne qui permet de copier le fichier prog1.py dans 
le répertoire TP lorsqu’on se trouve dans le répertoire nommé important. 

11. Donner la commande qui permet de vérifier si l’ordinateur P1 est accessible 
lorsque l’on travaille sur l’ordinateur P2. 

12. Donner une adresse possible pour l’ordinateur P2 du réseau local L2. 

Dans le cadre du protocole RIP, le chemin emprunté par les informations est celui qui 
aura la distance la plus petite en nombre de sauts. 
Dans le cadre du protocole OSPF, le chemin emprunté par les informations est celui 
qui aura le coût total minimal. 



25-NSIJ2AS1  Page : 19 / 19 

Extraits des tables de routage : 

Routeur Destination Passerelle 

R1  R9 R2 

R2  R9 R3 

R3  R9 R8 

R4  R9 R3 

R5  R9 R4 

R6  R9 R4 

R7  R9 R5 

R8  R9 R9 

R9  R9 LOCALHOS
T 

13. Donner le chemin emprunté par un paquet de données allant de l’ordinateur P1 
à l’ordinateur P2, en utilisant l’extrait de la table de routage. 

14. Donner le nom du protocole de routage qui semble être utilisé. 

Dans les questions suivantes, on utilise le protocole de routage OSPF. 

Pour calculer le coût 𝐶𝐶 d’une liaison, on utilise la formule : 𝐶𝐶 = 108

𝐵𝐵𝐵𝐵
 où BP est la bande 

passante en bits par seconde. 

15. Calculer les coûts pour des liaisons de 100 Mbits/s, 1 Gbits/s et 10 Gbits/s. 

16. Déterminer la route qui sera empruntée par le paquet de données envoyé de 
l’ordinateur P1 à l’ordinateur P2, en respectant le protocole OSPF. 


