
25-NSIJ2ME3 Page : 1 / 19

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

ÉPREUVE DU MERCREDI 10 SEPTEMBRE 2025

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 19 pages numérotées de 1/19 à 19/19.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIJ2ME3 Page : 2 / 19

Exercice 1 (6 points)

Cet exercice porte sur la programmation Python et la cryptographie.

Le chiffrement Playfair, popularisé par Lord Playfair et utilisé par l’armée britannique

durant les guerres du XXème siècle, est basé sur le chiffrement de paires de lettres

(appelées digrammes).

Partie A : la clef de chiffrement

Ce chiffrement utilise un tableau de 5×5 lettres contenant un mot clef. On remplit le

tableau avec les lettres du mot clef (sans doublons), puis on le complète avec les

lettres restantes de l’alphabet (sans la lettre W) dans leur ordre alphabétique. Une

lettre n’apparait qu’une seule fois dans le tableau.

Par exemple, si on choisit comme clef le mot PLAYFAIR, le carré de chiffrement

obtenu est le suivant :

Figure 1. Carré de chiffrement obtenu avec le mot clef PLAYFAIR

On commence par les lettres de la clef (cases blanches) sans les doublons (ici le A)

puis on complète le tableau (cases grisées) avec les lettres restantes de l’alphabet,

dans l’ordre alphabétique.

1. Donner le carré de chiffrement si la clef est EPREUVEDENSI.

On donne ci-dessous le code Python de la fonction creer_liste_clef qui prend en

paramètre la clef de chiffrement et renvoie une liste contenant 25 lettres ordonnées de

la façon suivante : d’abord les lettres de la clef choisie (sans doublon) puis les lettres

de l’alphabet restantes (classées par ordre alphabétique).

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 3 / 19

 1 def creer_liste_clef(clef):

 2 """

 3 hypothèse : la clef ne contient pas la lettre W

 4 """

 5 deja_utilises = []

 6 # alphabet sans la lettre W:

 7 alphabet = 'ABCDEFGHIJKLMNOPQRSTUVXYZ'

 8 for i in range(len(clef)):

 9 if not (clef[i] in deja_utilises):

10 deja_utilises.append(clef[i])

11 for lettre in alphabet:

12 if not lettre in deja_utilises:

13 deja_utilises.append(lettre)

14 return deja_utilises

Exemple :

creer_liste_clef('PLAYFAIR')

>>> ['P', 'L', 'A', 'Y', 'F', 'I', 'R', 'B', 'C', 'D', 'E',

'G', 'H', 'J', 'K', 'M', 'N', 'O', 'Q', 'S', 'T', 'U', 'V',

'X', 'Z']

2. Donner l’assertion à insérer en début de la fonction creer_liste_clef afin

de s’assurer que l’hypothèse sur la clef soit respectée.

On donne ci-dessous le code incomplet de la fonction creer_carre qui prend en

paramètre la liste créée par la fonction creer_liste_clef et renvoie le carré de

chiffrement.

1 def creer_carre(liste_clef):

2 carre = [[0 for i in range(5)] for j in range(5)]

3 for i in range(25):

4 carre[...][...] = liste_clef[i]

5 return carre

Exemple :

creer_carre(creer_liste_clef('PLAYFAIR'))

>>> [['P', 'L', 'A', 'Y', 'F'], ['I', 'R', 'B', 'C', 'D'],

['E', 'G', 'H', 'J', 'K'], ['M', 'N', 'O', 'Q', 'S'], ['T',

'U', 'V', 'X', 'Z']]

3. Recopier et compléter la ligne 4 du code de cette fonction creer_carre, en

utilisant les opérateurs % (reste de la division entière) et // (division entière).

Partie B : chiffrer un message

Le chiffrement d’un message se fait en deux étapes :

 1ère étape : on découpe le message en digrammes (paires de lettres) ;

 2ème étape : on chiffre chacun des digrammes avec le carré de chiffrement.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 4 / 19

Pour découper le message en digrammes, on prend les lettres deux par deux en tenant

compte de deux cas particuliers :

 si les deux lettres sont identiques, on ajoute un 'X' après la première lettre et

on poursuit le découpage deux à deux à partir de la deuxième lettre ;

 s’il ne reste qu’une seule lettre, on forme une dernière paire en lui ajoutant la

lettre un 'X'.

Par exemple :

le découpage de 'BACCALAUREAT' donnera 'BA', 'CX', 'CA', 'LA', 'UR',

'EA', 'TX'

Le chiffrement d’un message se fait ensuite en chiffrant chaque digramme (paire de

lettres), de la manière suivante :

 si les lettres du digramme se trouvent sur la même ligne du carré de chiffrement,

il faut les remplacer par celles se trouvant immédiatement à leur droite (en

bouclant sur la gauche si le bord est atteint) ;

 si les lettres apparaissent sur la même colonne du carré de chiffrement, les

remplacer par celles qui sont juste en dessous (en bouclant par le haut si le bas

de la table est atteint) ;

 sinon, remplacer les lettres par celles se trouvant sur la même ligne du carré de

chiffrement, mais dans le coin opposé du rectangle défini par la paire originale.

Par exemple, si le message est 'VIVELANSI', les digrammes sont : 'VI', 'VE',

'LA', 'NS', 'IX' et leurs codages avec la clef PLAYFAIR sont :

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 5 / 19

Figure 2. Chiffrement de quelques digrammes

digramme VI VE LA NS IX

chiffré TB TH AY OM CT

On donne ci-dessous le code incomplet de la fonction couper_en_digrammes qui

prend en paramètre une chaine de caractères et renvoie la liste des digrammes la

constituant :

 1 def couper_en_digrammes(message):

 2 digrammes = []

 3 i = 0

 4 while i < len(message) - 1:

 5 if message[i] == message[i+1]:

 6 digrammes.append(message[i] + 'X')

 7 i = i + 1

 8 else:

 9 ...

10 i = i + 2

11 if i == len(message) - 1: #il reste une lettre isolée

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 6 / 19

12 digrammes.append(message[i] + 'X')

13 return digrammes

4. Donner le code de la ligne 9 manquante de cette fonction

couper_en_digrammes.

5. Donner le résultat de l’appel couper_en_digrammes('BONJOUR').

6. Donner le chiffrement du message BONJOUR avec le carré de chiffrement

PLAYFAIR donné en Figure 1.

7. Donner le code Python de la fonction ligne_colonne qui prend en

paramètres une lettre et le carré de chiffrement créé par la fonction

creer_carre, et qui renvoie les coordonnées de la lettre dans le carré de

chiffrement.

 Exemple (avec le carré de chiffrement de la Figure 1) :

 ligne_colonne('A', carre)

>>> (0, 2)

ligne_colonne('N', carre)

>>> (3, 1)

8. Donner le code Python de la fonction sur_la_meme_ligne qui prend en

paramètres un digramme et le carré de chiffrement créé par la fonction

creer_carre, et qui renvoie True si les deux lettres du digramme sont sur la

même ligne, ou False sinon.

 Exemple (avec le carré de chiffrement de la Figure 1):

 sur_la_meme_ligne('RT', carre)

>>> False

sur_la_meme_ligne('PL', carre)

>>> True

On dispose pour la suite de la fonction sur_la_meme_colonne, similaire à

sur_la_meme_ligne mais en colonne.

Voici le code incomplet de la fonction chiffrer_digramme qui prend en paramètres

le carré de chiffrement et un digramme, et qui renvoie le digramme chiffré

correspondant :

 1 def chiffrer_digramme(digramme, carre):

 2 lettre1 = digramme[0]

 3 lettre2 = digramme[1]

 4 i1, j1 = ligne_colonne(lettre1, carre)

 5 i2, j2 = ligne_colonne(lettre2, carre)

 6 if sur_la_meme_ligne(digramme, carre):

 7 digramme_chiffre = carre[i1][(j1 + 1)%5] +

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 7 / 19

carre[i2][(j2 + 1)%5]

 8 elif sur_la_meme_colonne(digramme, carre):

 9 digramme_chiffre = ...

10 else:

11 digramme_chiffre = ...

12 return digramme_chiffre

9. Donner le code complet des lignes 9 et 11 de cette fonction

chiffrer_digramme.

10. Écrire le code python de la fonction chiffrer_playfair qui prend en

paramètres deux chaînes de caractères message et clef correspondant au

message à chiffrer et au mot-clef choisi, et qui renvoie le message chiffré, en
utilisant les fonctions déjà écrites précédemment.

 Exemple :

 chiffrer_playfair('VIVELANSI', 'PLAYFAIR')

>>> 'TBTHAYOMCT'

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 8 / 19

Exercice 2 (6 points)

Cet exercice porte sur les systèmes d’exploitation ainsi que sur programmation et la

programmation orientée objet.

Partie A

1. Écrire, dans un système Linux, la commande masquée en noir qui a permis
d’obtenir le résultat de la Figure 1.



 Figure 1. Capture d’écran d’un terminal Linux

Dans la Figure 1, les permissions des fichiers apparaissent au début de chaque ligne

et sont composées de 10 caractères. En lisant de la gauche vers la droite :

 le premier caractère indique la nature du fichier, - pour un fichier classique, d

pour un répertoire et l pour un lien ;

 ensuite, on trouve trois groupes de 3 caractères chacun, indiquant si le fichier

(ou répertoire) est autorisé en lecture r, écriture w ou exécution x. Si la

permission n’est pas accordée, le caractère est remplacé par -. Les 3 groupes

correspondent, dans cet ordre, aux droits du propriétaire (user), du groupe
(group) puis du reste des utilisateurs (other).

2. Décrire les permissions que les trois types d’utilisateurs (user, group ou other)

ont sur le fichier verify.sh d’après la Figure 1.

3. D’après la Figure 1, écrire la commande que l’utilisateur, propriétaire du fichier

concat.pls, doit saisir pour supprimer ce fichier.

On s’intéresse à la façon de modifier les permissions d’un fichier avec la commande

chmod. Pour cela on saisit dans un terminal la commande man chmod. La Figure 2 ci-

après reproduit l’affichage obtenu.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 9 / 19

Figure 2. Extrait de la page de manuel de chmod

4. Avec les éléments de la Figure 1 et à la lecture de la documentation Figure 2,

expliquer quel sera l’effet de l’instruction chmod g-wx todo.txt.

Partie B

Dans la suite de la documentation de la commande chmod, on peut lire l’extrait suivant.

l’indication de mode, qui peut être une représentation

symbolique des changements à effectuer, ou un nombre octal

représentant le motif binaire des nouveaux bits de

comportement.

Cela signifie que l’on peut indiquer les permissions soit sous la forme d’une chaîne de

9 caractères composée de -, r,w et x, appelée représentation symbolique, soit sous

la forme d’une valeur numérique abc composée de trois chiffres a, b et c compris entre

0 et 7 appelée représentation octale.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 10 / 19

Le but de cette partie est d’écrire des fonctions Python permettant de passer d’une

représentation symbolique à une représentation octale des permissions.

On considère une chaîne de trois caractères dont :

 le premier caractère est '-' ou 'r' ;

 le second caractère est '-' ou 'w' ;

 et le dernier est '-' ou 'x'.

On souhaite déterminer le motif binaire de 3 bits correspondant à cette chaîne. Pour

cela, on applique les règles suivantes :

 si le premier caractère est 'r', le premier bit (celui le plus à gauche), vaut 1,

sinon il vaut 0 ;

 si le second caractère est 'w', le second bit vaut 1, sinon il vaut 0 ;

 Si le dernier caractère est 'x', le dernier bit vaut 1, sinon il vaut 0.

5. Déterminer l’écriture en base 10 du motif binaire de 3 bits correspondant à la

chaîne 'rw-'.

La représentation octale associée à une représentation symbolique est obtenue en

appliquant ce qui précède trois fois :

 les trois caractères correspondant à user donnent le chiffre de gauche ;

 les trois suivants (correspondant à group) donnent le chiffre du milieu ;

 les trois derniers (correspondant à other) donnent le chiffre de droite.

Par exemple, la représentation octale associée à la représentation symbolique rwxr-

xr-- est 754.

6. Écrire le code d’une fonction Python bin_to_oct qui prend en paramètre une

chaîne de 3 caractères composée uniquement des caractères '0' et '1' et

renvoie la représentation octale correspondant à ce motif binaire (le bit de poids
fort étant encore à gauche).

 Exemples :

 >>> bin_to_oct('101')

5

>>> bin_to_oct('011')

3

7. On considère la fonction Python mystere qui prend en paramètre une chaîne

de 9 caractères et qui renvoie une chaîne de caractères.

 1 def mystere(chaine):

2 resultat = ''

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 11 / 19

3 for c in chaine:

4 if c == '-':

5 resultat = resultat + '0'

6 else:

7 resultat = resultat + '1'

8 return resultat

 Déterminer ce que renvoie mystere('rw-r-xr--').

8. On considère dans cette question qu’on dispose d’une fonction Python

symb_to_bin qui prend en paramètre une chaîne de 9 caractères

correspondant à l’écriture symbolique d’une permission et qui renvoie une
chaîne de caractères correspondant au motif binaire de cette permission.

 Recopier et compléter le code de la fonction Python symb_to_oct donné ci-

dessous, qui prend en paramètre une représentation symbolique sous la forme
d’une chaîne de caractères, et qui renvoie la représentation octale
correspondante sous la forme d’une chaîne de caractères. Il est possible de
répondre en une ou plusieurs lignes de code.

 1 def symb_to_oct(chaine):

 2 repr_bin = symb_to_bin(chaine)

 3 # les 3 premiers bits correspondent au propriétaire

 4 user = repr_bin[0] + repr_bin[1] + repr_bin[2]

 5 # les 3 suivants au groupe

 6 group = repr_bin[3] + repr_bin[4] + repr_bin[5]

 7 # et les 3 derniers aux autres

 8 other = repr_bin[6] + repr_bin[7] + repr_bin[8]

 9 ...

 Exemples :

 >>> symb_to_oct('rwxrw-r--')

'764'

>>> symb_to_oct('rw-r--r--')

'644'

Partie C

Dans cette partie, on souhaite écrire un gestionnaire de fichiers Linux. Pour cela, on

modélise les fichiers en utilisant la programmation orientée objet. On dispose de la

classe Fichier ci-dessous.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 12 / 19

1 class Fichier:

2 def __init__(self, nom, poids, proprio, groupe,

permission):

3 self.nom = nom

4 self.poids = poids # taille en octets

5 self.proprietaire = proprio # nom du propriétaire

6 self.groupe = groupe # nom du groupe

7 self.permission = permission # représentation symbolique

9. Instancier l’objet mon_fichier de la classe Fichier représentant un fichier

nommé concat.pls, dont le propriétaire est root, le groupe est www-data,

le poids 1257 octets et dont les permissions sont données par la représentation

symbolique 'rw-r--r--'.

10. Écrire une méthode chown de la classe Fichier qui prend en paramètre une

chaîne de caractères qui correspond au nom du nouveau propriétaire et qui
modifie le propriétaire du fichier.

11. Écrire une fonction get_executable qui prend en paramètres une liste

d’objets de la classe Fichier ainsi qu’un nom de propriétaire et qui renvoie la

liste des fichiers qui appartiennent à ce propriétaire et qui sont exécutables par
ce propriétaire.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 13 / 19

Exercice 3 (8 points)

Cet exercice porte principalement sur les bases de données, les graphes et la

programmation de base en Python.

Un supermarché utilise une base de données qui contient des informations sur les

produits, les fournisseurs, les commandes passées et leurs détails. Le modèle

relationnel de cette base est donné par le schéma ci-dessous :

Figure 1. Schéma relationnel de cette base

Dans ce schéma, les clés primaires sont soulignées et les clés étrangères sont

précédées du symbole #. Le type de chaque attribut est indiqué entre parenthèses.

On considère l’extrait de la base de données ci-dessous :

Table Commandes

id_commande date_commande total_commande

1 03/06/2025 176.00

2 08/12/2024 1150.00

3 21/04/2025 155.00

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 14 / 19

Table Produits

id_produit nom categorie prix quantite_stock id_fournisseur

1 Yaourts

blanc x 4

Alimentaire 2.80 50 2

2 Lait Alimentaire 1.20 200 2

3 Pain Alimentaire 1.50 100 4

4 Harry

Potter 1

Livre 15.00 20 3

5 Jeu

d’échecs

Jeux 40.00 30 3

6 T-shirt

taille M

Vêtement 10.00 80 1

7 Jeans

taille M

Vêtement 25.00 60 5

Table Fournisseurs

id_fournisseur nom adresse ville pays

1 Moda e stile Via della Moda, 45 Milano Italie

2 Laiteries Unies 22 Avenue des Vaches Lisieux France

3 Livres en Folie 56 Boulevard des

Livres

Toulouse France

4 Boulangerie du

Coin

34 Rue du Pain Nantes France

5 Estilo Español Calle de la Moda, 123 Madrid Espagne

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 15 / 19

Table Details

id_details id_commande id_produit quantite prix_unitaire

1 1 1 20 2.80

2 1 2 100 1.20

3 2 6 40 10.00

4 2 7 30 25.00

5 3 5 2 40.00

6 3 4 5 15.00

L’énoncé de cet exercice utilise tout ou une partie des mots clefs du langage SQL

suivants : SELECT, DISTINCT, FROM, WHERE, JOIN … ON, UPDATE … SET,

DELETE, INSERT INTO … VALUES.

Avant de mettre en vente un nouveau produit, il faut le créer dans la base.

1. Écrire une requête SQL permettant d’ajouter le produit croissant référencé dans
la base sous le numéro 10. Il est vendu au prix unitaire de 0,90 €. Le magasin
se fournit, pour ce produit, auprès de Boulangerie du Coin.

Le fournisseur Livres en Folie a changé d’entrepôt. Il se trouve maintenant au 78 Rue

des Jeux à Elbeuf (France).

2. Écrire la requête SQL permettant de mettre à jour la base de données.

3. Décrire le résultat obtenu avec la requête SQL ci-dessous :

 SELECT nom

FROM Produits

WHERE categorie = 'Alimentaire' ;

4. Écrire une requête SQL permettant d’afficher les détails des commandes
passées ayant un total de commande supérieur ou égal à 1000 €.

5. Écrire une requête SQL permettant d’afficher le nom des fournisseurs basés en
Espagne ou en Italie.

6. Écrire une requête SQL qui permet d’afficher le nom de tous les fournisseurs
qui ont vendu des produits alimentaires.

7. Écrire une requête SQL permettant d’afficher le numéro et la date des
commandes ainsi que le nom des fournisseurs où des produits de catégories

Vêtement ont été commandés.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 16 / 19

Un fournisseur, dont l’entrepôt est situé à Toulouse, approvisionne différents

supermarchés à travers la France, notamment dans les villes de Bordeaux, Calais,

Lyon, Marseille, Nantes, Paris et Strasbourg.

On utilise un graphe dont les sommets sont les initiales des villes où se situent les

supermarchés et l’entrepôt du fournisseur. Les arêtes sont pondérées avec les

distances en kilomètres entre les villes.

Figure 2. Graphe représentant le réseau routier

8. Déterminer le plus court chemin (en termes de distance) entre Toulouse et
Calais.

9. Écrire la liste des sommets dans l’ordre d’un parcours en profondeur à partir de
Calais (les sommets sont toujours pris dans l’ordre alphabétique s’il y a un choix
à faire).

10. Écrire la liste des sommets dans l’ordre d’un parcours en largeur à partir de
Calais (les sommets sont toujours pris dans l’ordre alphabétique s’il y a un choix
à faire).

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 17 / 19

Pour implémenter ce graphe, on utilise le dictionnaire en Python ci-dessous :

graphe = {'Paris': {'Strasbourg': 490, 'Lyon': 465,

 'Nantes': 385, 'Calais': 300},

 'Strasbourg': {'Paris': 490, 'Lyon': 470,

 'Calais': 600},

 'Lyon': {'Paris': 465, 'Strasbourg': 470,

 'Toulouse': 405, 'Nantes': 600},

 'Nantes': {'Paris': 385, 'Lyon': 600,

 'Bordeaux': 340, 'Calais': 550},

 'Calais': {'Paris': 300, 'Strasbourg': 600,

 'Nantes': 550},

 'Toulouse': {'Lyon': 405, 'Bordeaux': 250,

 'Marseille': 400},

 'Marseille': {'Toulouse': 400},

 'Bordeaux': {'Nantes': 340, 'Toulouse': 250}

}

Dans cette implémentation, il manque la route entre Lyon et Marseille.

11. Écrire les instructions permettant d’ajouter dans le dictionnaire graphe la route

entre les villes de Lyon et Marseille sachant que la distance les séparant est de
315 km.

12. Écrire une fonction distance qui prend en paramètres le dictionnaire graphe

et deux villes (de type str) et qui renvoie la distance entre ces deux villes si

elles sont adjacentes, ou None sinon.

Pour déterminer le chemin entre deux villes quelconques (s’il en existe un) dans le

dictionnaire graphe, on utilise la fonction trouver_chemin(graphe,

ville_depart, ville_destination) qui renvoie la liste des villes parcourues.

On suppose que cette fonction est codée en Python.

13. Écrire une fonction distance_totale qui prend en paramètre le dictionnaire

graphe et deux villes (de type str) et qui renvoie la distance entre ces deux

villes s’il existe un chemin entre elles sinon elle retourne None.

On décide désormais de prendre en compte le temps nécessaire pour parcourir les

distances entre les villes.

Ainsi les arêtes du graphe sont pondérées à l’aide d’une liste contenant la distance (en

km arrondie à l’unité) et la durée (en heure arrondie à deux décimales) nécessaire pour

effectuer le trajet entre les deux villes.

Exemple :>>> graphe['Paris']

{'Strasbourg': [490, 6.37], 'Lyon': [465, 5.58], 'Nantes':

[385, 3.47], 'Calais': [300, 3.3]}

14. À partir de l’exemple précédent, déterminer la valeur de

graphe['Paris']['Nantes'][1].

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 18 / 19

La fonction ratio_duree_distance ci-dessous prend en paramètre le dictionnaire

graphe. Elle permet de calculer le ratio durée/distance pour toutes les arêtes du

graphe et de l’ajouter à la pondération de chaque arête :

1 def ratio_duree_distance(graphe):

2 for ville, connexions in ...:

3 for destination, valeurs in ...:

4 distance, duree = ...

5 ratio = ...

6 graphe[ville][destination].append(...)

7 return graphe

Grâce à cette fonction, on obtient la mise à jour du dictionnaire graphe :

graphe = {'Paris': {'Strasbourg': [490, 6.37, 0.013],

 'Lyon': [465, 5.58, 0.012],

 'Nantes': [385, 3.47, 0.009],

 'Calais': [300, 3.3, 0.011]},

 'Strasbourg': {'Paris': [490, 6.37, 0.013],

 'Lyon': [470, 4.23, 0.009],

 'Calais': [600, 9.0, 0.015]},

 'Lyon': {'Paris': [465, 5.58, 0.012],

 'Strasbourg': [470, 4.23, 0.009],

 'Toulouse': [405, 4.86, 0.012],

 'Marseille': [315, 2.84, 0.009],

 'Nantes': [600, 7.2, 0.012]},

 'Nantes': {'Paris': [385, 3.47, 0.009],

 'Lyon': [600, 7.2, 0.012],

 'Bordeaux': [340, 4.08, 0.012],

 'Calais': [550, 8.25, 0.015]},

 'Calais': {'Paris': [300, 3.3, 0.011],

 'Strasbourg': [600, 9.0, 0.015],

 'Nantes': [550, 8.25, 0.015]},

 'Toulouse': {'Lyon': [405, 4.86, 0.012],

 'Bordeaux': [250, 2.5, 0.010],

 'Marseille': [400, 6.0, 0.015]},

 'Marseille': {'Lyon': [315, 2.84, 0.009],

 'Toulouse': [400, 6.0, 0.015]},

 'Bordeaux': {'Nantes': [340, 4.08, 0.012],

 'Toulouse': [250, 2.5, 0.010]}

}

15. Recopier et compléter la fonction ratio_duree_distance.

EducN_MDDM3MT2Y3MTAexMj9MyMmjAyNT2EyMTUOxMTyA0MAzgg

25-NSIJ2ME3 Page : 19 / 19

Un élève souhaite utiliser ChatGPT pour trouver un algorithme qui détermine le chemin

à privilégier entre deux villes. Il fournit son script Python contenant le dictionnaire

graphe (et son descriptif) et les fonctions précédentes. Il écrit le prompt suivant :

Écris un algorithme, en langage naturel, pour trouver un chemin entre deux villes en

minimisant le ratio durée/distance où à chaque étape, on choisira l’arête avec le ratio

le plus faible.

16. Déterminer le nom que l’on donne à un algorithme qui construit une solution
étape par étape, comme celui demandé par l’élève.

17. Déterminer le chemin trouvé grâce à cet algorithme entre Toulouse et Calais.

