
25-NSIPE4 Page : 1 / 14

BACCALAURÉAT GÉNÉRAL

ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2025

NUMÉRIQUE ET SCIENCES INFORMATIQUES

Durée de l’épreuve : 3 heures 30

L’usage de la calculatrice n’est pas autorisé.

Dès que ce sujet vous est remis, assurez-vous qu’il est complet.

Ce sujet comporte 14 pages numérotées de 1/14 à 14/14.

Le sujet est composé de trois exercices indépendants.

Le candidat traite les trois exercices.

25-NSIPE4 Page : 2 / 14

Exercice 1 (6 points)

Cet exercice porte sur les bases de données relationnelles et les requêtes SQL.

Dans cet exercice, on pourra utiliser les clauses du langage SQL pour :

• construire des requêtes d’interrogation à l’aide de SELECT, FROM, WHERE (avec
les opérateurs logiques AND , OR), JOIN ... ON ;

• construire des requêtes d’insertion et de mise à jour à l’aide de UPDATE,
INSERT, DELETE ;

• affiner les recherches à l’aide de ORDER BY.

Pour analyser les résultats et les performances de plusieurs joueurs et joueuses de
tennis d’un club, on élabore une base de données relationnelle. Les données récoltées
lors de plusieurs tournois, au fil des saisons, doivent ensuite permettre de fournir des
statistiques. Chacune des requêtes demandées devra être écrite en langage SQL.

Voici un extrait de la table joueurs dans cette base :

joueurs

id nom prenom genre

1 Durand Enzo 1

2 Panais Lise 2

3 Alpin Lucas 1

4 Benard Elsa 2

5 Benard Emma 2

• id est de type INT, cet attribut est la clé primaire de cette table ;

• nom est de type TEXT ;

• prenom est de type TEXT ;

• genre est de type INT (1 pour un joueur, 2 pour une joueuse).

1. Expliquer pourquoi l’attribut nom ne peut pas être choisi comme clé primaire.

2. Écrire une requête permettant d’obtenir les noms et prénoms des joueuses du
club.

3. Écrire une requête permettant d’ajouter dans la table le joueur dont le prénom
est Nathan et le nom est Gervais, en choisissant une valeur pour l’identifiant id
cohérente avec le reste de la base.

On s’intéresse maintenant à la table competitions, répertoriant les différents
tournois auxquels ont participé les joueurs et joueuses du club.

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 3 / 14

competitions

id nom annee

1 Open de Tours 2022

2 Tournoi de Blois 2023

3 Open de Toums 2023

4 Open de Nantes 2023

5 Open de Nantes 2021

6 Tournoi d’Angers 2024

• id est de type INT, il s’agit de la clé primaire de cette table ;

• nom est de type TEXT ;

• annee est de type INT.

4. Une faute de frappe s’est glissée dans le nom de la compétition d’identifiant 3.
Écrire une requête permettant de corriger le nom en Open de Tours.

5. Écrire une requête permettant d’obtenir la liste des noms des tournois, ainsi que
leur année, en triant par année croissante.

Le lien entre ces deux tables se fait à l’aide d’une table participe. Celle-ci contient
aussi les statistiques recueillies lors de cette participation.

participe

id_joueur id_compet nb_fautes nb_gagnant aces

1 1 16 12 1

3 1 14 8 2

1 3 7 15 2

3 3 12 8 1

2 2 15 10 3

2 4 10 17 0

4 4 7 18 4

5 4 11 15 1

• id_joueur est de type INT et est une clé étrangère se rattachant à la table
joueurs ;

• id_compet est de type INT et est une clé étrangère se rattachant à la table
competitions ;

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 4 / 14

• nb_fautes est de type INT et donne le nombre de fautes directes faites durant
le tournoi ;

• nb_gagnant est de type INT et donne le nombre de coups gagnants réalisés
durant le tournoi ;

• aces est de type INT et donne le nombre de services gagnants non touchés
par l’adversaire durant le tournoi ;

• la clé primaire de la table est constituée du couple des attributs id_joueur et
id_compet.

6. Écrire une requête permettant d’obtenir le nom et le prénom des joueurs et des
joueuses ayant obtenu un nombre de coups gagnants strictement supérieur au
nombre de fautes lors d’une compétition, la même personne pouvant apparaître
plusieurs fois si elle a rempli ces conditions lors de plusieurs compétitions.

7. Écrire une requête permettant d’obtenir le nom, le prénom des joueuses et le
nom des compétitions auxquelles elles ont participé en 2023.

8. On souhaite supprimer de la table joueurs la joueuse Emma Benard qui ne
fait plus partie du club. Déterminer quelle précaution on doit prendre avant de
pouvoir le faire. Justifier.

9. Une joueuse du club, de prénom Agathe et de nom Turion, a participé au
Tournoi de Blois en 2024, où elle a fait 14 fautes directes, réalisé 15 coups
gagnants et servi 2 aces. Écrire les différentes requêtes, dans le bon ordre,
permettant d’insérer cette joueuse et ses résultats dans la base, en choisissant
pour identifiant pour la table joueurs la valeur 7 et pour la table
competitions la valeur 5.

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 5 / 14

Exercice 2 (6 points)

Cet exercice porte sur les réseaux, le routage, les graphes et la programmation

Un aéroport dispose d’un réseau informatique décomposé en différents sous-réseaux :

• Navigation (N) : utilisé principalement par la tour de contrôle ;

• Guichets (G) : utilisé aux guichets dans le hall ;

• Achats (A) : utilisé sur les bornes d’achat placées dans le hall ;

• Sécurité (S) : utilisé aux contrôles de sécurité ;

• Portes (P) : utilisé au niveau des portes d’accès aux avions ;

• Bagages (B) : utilisé par les services qui gèrent le transit des bagages ;

• Commerces (C) : utilisé par tous les commerces.

Le réseau possède l’architecture suivante, où R1, R2, R3, R4, R5, R6 et R7 sont des
routeurs :

Figure 1. Schéma du réseau.

Partie A : Réseau et adressage

On souhaite ajouter des machines sur le sous-réseau Commerces sur lequel sont déjà
connectées 207 machines. L’adresse du sous-réseau est 137.254.128.0 et le masque
de sous-réseau utilisé est 255.255.255.0 (l’adresse IP du réseau est donc
137.254.128.0/24 en notation CIDR). On rappelle que cela signifie que les adresses
IP du réseau ont toutes en commun leurs 24 premiers bits lorsque les adresses IP sont
écrites en binaire.

À part le routeur, toutes les machines déjà présentes sur le sous-réseau sont
numérotées dans l’ordre croissant en partant de la plus petite IP disponible.

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 6 / 14

1. Parmi les deux adresses IP suivantes : 137.254.128.200 et 137.254.128.210,
donner l’adresse IP de la machine déjà connectée au sous-réseau Commerces.

2. Préciser s’il est possible ou non d’ajouter 132 machines sur le sous-réseau
Commerces, en justifiant la réponse.

Partie B : Programmation d’un protocole de routage

Dans la suite de l’exercice, pour simplifier, on ne considère que les routeurs. Les tables
de routage simplifiées sont données dans le tableau suivant, précisant pour chaque
routeur en tête de colonne, la passerelle (c’est-à-dire le routeur à contacter)
correspondant au routeur destination en début de ligne.

Source R1 R2 R3 R4 R5 R6 R7

Destination

R1 R1 R1 R6 R2 R4 R4

R2 R2 R2 R3 R2 R5 R6

R3 R3 R3 R3 R6 R3 R4

R4 R3 R3 R4 R6 R4 R4

R5 R2 R5 R2 R6 R5 R6

R6 R2 R5 R6 R6 R6 R6

R7 R3 R3 R6 R7 R6 R7

Ainsi, selon ce tableau, si le routeur R3 reçoit des données à transmettre au routeur
R5, il enverra ses données au routeur R2.

3. Donner la liste des routeurs par lesquels transite un message envoyé depuis
une machine du sous-réseau Navigation à destination d’une machine du sous-
réseau Commerces.

4. Décrire le problème rencontré lorsque qu’une machine du sous-réseau
Commerces envoie des données à destination d’une machine du sous-réseau
Navigation.

Pour éviter ce problème, on veut reconfigurer les routeurs en réécrivant leurs tables
de routage à l’aide d’un programme. Pour y parvenir, on modélisera le réseau par un
graphe.

Dans toute la suite, les sommets du graphe, qui représenteront les routeurs du réseau,
seront décrits par leur nom (type str) et un graphe sera représenté par un dictionnaire
associant à chaque sommet la liste des sommets qui lui sont liés par une arête.

Pour la prochaine question uniquement, on considère le réseau obtenu en se limitant
aux routeurs R1, R2, R3 et R5. On obtient alors le réseau suivant :

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 7 / 14

Figure 2. Schéma du réseau restreint aux routeurs R1, R2, R3 et R5.

5. Donner le dictionnaire correspondant au réseau de la Figure 2.

6. Rappeler le principe d’une fonction récursive.

Pour remplir les tables de routage en évitant le problème soulevé à la question 4, on
souhaite utiliser le protocole RIP, qui minimise le nombre de routeurs par lesquels les
paquets transitent. Une première idée est de construire la liste de tous les chemins
possibles reliant ces deux routeurs puis de choisir un chemin le plus court possible
dans cette liste.

On suppose que l’on dispose d’une fonction liste_chemins(graphe, r_depart,
r_arrivee) qui prend en paramètres un graphe, un routeur de départ et un routeur
d’arrivée et qui renvoie la liste de tous les chemins liant les deux routeurs, les chemins
étant représentés par les listes des routeurs par lesquels passer.

En notant g le graphe écrit à la question 5. On a donc :

1 >>> liste_chemins(g, 'R1', 'R5'))
2 [['R1', 'R2', 'R5'], ['R1', 'R3', 'R2', 'R5']]

On a besoin de connaître un chemin le plus court possible entre deux routeurs en
utilisant le protocole RIP.

7. Écrire une fonction plus_court_chemin(graphe, r_depart,
r_arrivee) qui renvoie une liste représentant un des plus courts chemins
entre les routeurs r_depart et r_arrivee en utilisant le protocole RIP. On
utilisera la fonction liste_chemins définie à la question précédente.

L’agent responsable du réseau consulte un informaticien au sujet de cette fonction. Il
lui explique que cette fonction a un défaut : construire tous les chemins liant deux
routeurs peut être long pour un réseau étendu. En effet, le nombre de chemins
augmente de façon quasi exponentielle avec le nombre de routeurs. Pour remédier à
ce problème et améliorer le temps d’exécution de la recherche d’un plus court chemin,
l’informaticien lui propose d’utiliser une autre approche basée sur un parcours en
largeur du graphe. En effet, avec un tel parcours, si un chemin est trouvé, il est
forcément de longueur minimale.

8. Compléter la fonction plus_court_chemin_largeur(graphe,
r_depart, r_arrivee) suivante qui traduit l’idée de l’informaticien,

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 8 / 14

réalisant un parcours en largeur et dans laquelle le dictionnaire
dict_chemins associe à un routeur le chemin reliant r_depart à ce
routeur.

 def plus_court_chemin_largeur(graphe, r_depart,
r_arrivee):
 dict_chemins = {}
 L = [r_depart]
 sommets_marques = [r_depart]
 dict_chemins[r_depart] = [r_depart]
 for r in L:
 for s_r in graphe[r]:
 if not s_r in sommets_marques:
 sommets_marques.append(...)
 dict_chemins[s_r] = dict_chemins[r] +
[s_r]
 if s_r == r_arrivee :
 return ...
 L.append(s_r)

9. Écrire alors une fonction table_routage(graphe, routeur) qui renvoie
la table de routage du routeur passé en paramètre sous la forme d’un
dictionnaire associant à chaque routeur destination la passerelle
correspondante. On pourra utiliser les fonctions écrites dans les questions
précédentes.

Partie C : Utilisation du protocole OSPF

Le réseau utilise trois types de connexion :

• Ethernet (E) : débit de 10 megabits par seconde ;
• Fast Ethernet (FE) : débit de 100 megabits par seconde ;
• Fibre (F) : débit de 500 megabits par seconde.

Les types de connexion sont reportés sur la figure du réseau suivante :

Figure 3. Types de connexions du réseau.

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 9 / 14

La qualité des liaisons entre les routeurs étant de natures différentes, on décide
finalement d’opter pour un routage utilisant le protocole OSPF (Open Shortest Path
First). On rappelle que le protocole OSPF configure les routeurs en privilégiant les
routes dont le coût total est minimal, où le coût des connexions est donné par la formule
suivante :

coût = 109

débit
, où le débit est exprimé en bits par seconde.

10. Calculer le coût correspondant à chaque type de liaison.

11. Donner la liste des routeurs par lesquels transite un message envoyé depuis le
routeur R1 à destination du routeur R7 en respectant le protocole OSPF.

12. Recopier et compléter la table de routage du routeur R2 toujours en respectant
le protocole OSPF.

Destination Suivant

R1

R2

R3

R4

R5

R6

R7

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 10 / 14

Exercice 3 (8 points)

Cet exercice porte sur l’algorithmique des tableaux, la gestion de bugs, les listes, les
piles et la programmation orientée objet.

Le but de cet exercice est d’implémenter un algorithme de pseudo-tri, appelé le tri
dictatorial.

L’exercice est constitué de trois parties indépendantes.

Pour chaque question, on peut considérer acquis les résultats et les fonctions
demandés dans les questions précédentes, même sans les avoir traitées.

Le pseudo-tri dictatorial d’une série d’entiers suit le principe suivant :

• s’il n’y a aucun ou un seul élément, la série est considérée comme triée et n’est
donc pas modifiée ;

• sinon :
– on conserve le premier élément de la série ;
– pour chaque élément de la série à partir du deuxième :

• si l’élément est plus petit que le dernier élément conservé alors on
l’élimine ;

• sinon on le conserve.

Par exemple, si on considère la série 2, 3, 1, 8 :

• on conserve le 2 qui est le premier élément ;
• le 3 n’est pas plus petit que le dernier conservé (qui est 2) donc on le conserve

;
• le 1 est plus petit que le dernier conservé (qui est 3) donc on l’élimine ;
• le 8 n’est pas plus petit que le dernier conservé (qui est toujours 3) donc on le

conserve.

La série triée obtenue après cet algorithme est donc 2, 3, 8.

Partie A

Dans cette partie, on implémente le tri dictatorial en utilisant le type list de Python
pour représenter une série d’entiers.

On souhaite coder une fonction tri_dictatorial qui :

• prend en paramètre une liste d’entiers serie de type list ;
• renvoie une nouvelle liste d’entiers obtenue en suivant l’algorithme présenté en

introduction, c’est-à-dire une liste triée, éventuellement vide, ne contenant que
les éléments de serie à conserver ;

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 11 / 14

• ne modifie pas serie.

Par exemple, si s = [5, 2, 6, 8, 3, 7], l’appel tri_dictatorial(s) devrait
renvoyer la liste [5, 6, 8] sans modifier s. On remarque que la liste obtenue est en
effet triée.

1. Donner le résultat que doit renvoyer l’appel : tri_dictatorial([31, 45,
41, 28, 37, 108, 127, 2, 124, 421]).

2. Expliquer pourquoi le tri dictatorial n’est pas un algorithme de tri.

Edgar a écrit le programme suivant, qui prétend implémenter le tri dictatorial :

1 def tri_dictatorial(serie):
2 serie_triee = [serie[0]]
3 for i in range(1, len(serie)):
4 if serie[i] >= serie[i - 1]:
5 serie_triee.append(serie[i])
6 return serie_triee

Edgar souhaite tester si sa fonction fait bien ce qu’elle est censée faire.

3. Edgar réalise l’appel tri_dictatorial([8, 2, 9, 6, 12]).

 Expliquer pas à pas comment la liste serie_triee se construit après cet
appel.

4. Edgar réalise maintenant l’appel tri_dictatorial([]) et obtient l’erreur
suivante :

 Traceback (most recent call last):
 File "tri_edgar.py", line 8, in <module>
 tri_dictatorial([])
 File "tri_edgar.py", line 2, in tri_dictatorial
 result = [serie[0]]
IndexError: list index out of range

 Expliquer précisément l’erreur obtenue et proposer une modification du code
d’Edgar afin que cet appel soit conforme à l’algorithme du tri dictatorial décrit en
introduction.

Dijkstra lors de la réception de son prix Turing en 1972, a notamment déclaré :

“Program testing can be a very effective way to show the presence of bugs, but it is
hopelessly inadequate for showing their absence.”

ce que l’on peut traduire par :

“Tester les programmes peut être un moyen très efficace d’y trouver des bugs, mais
c’est un moyen désespérément inadéquat pour prouver leur absence.”

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 12 / 14

5. Expliquer pourquoi des tests ne peuvent pas prouver de façon certaine
l’absence de bugs d’un programme en général.

Edgar décide de procéder à un test supplémentaire et réalise l’appel
tri_dictatorial([8, 2, 3, 5, 12]). La fonction renvoie alors [8, 3, 5,
12] qui n’est pas une liste triée.

6. Expliquer la cause du problème et proposer une modification du code d’Edgar
afin de la corriger.

Partie B

Dans cette partie, on implémente le tri dictatorial sur des listes chaînées. Cette fois-ci
on va modifier la liste chaînée initiale au lieu de construire une nouvelle liste.

On dispose d’une classe Maillon :

1 class Maillon:
2 def __init__(self, val, suiv):
3 self.valeur = val
4 self.suivant = suiv

L’attribut suivant doit correspondre à un Maillon (le suivant de self), ou à None
si self est le dernier.

On dispose également d’une classe Liste qui implémente une liste chaînée avec
pour unique attribut tete qui est le maillon de tête de la liste chaînée, une instance de
Maillon :

class Liste:
 def __init__(self, tete):
 self.tete = tete

On peut représenter graphiquement une liste chaînée de la manière suivante, avec la
barre à hachure symbolisant la valeur None :

Figure 1. Liste chaînée constituée de trois maillons m1, m0 et m8.

7. Donner des instructions permettant de construire les trois maillons m1, m0 et m8
et la liste chaînée représentés ci-dessus. On nommera la liste chaînée
ma_liste.

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 13 / 14

8. Indiquer ce que renvoie chacune des instructions ci-dessous :

 m1.valeur == 1
m1.suivant.valeur == 8
m1.suivant.suivant == None
m1.suivant.suivant.suivant == None

9. Donner une instruction permettant de transformer ma_liste en la liste
chaînée représentée ci-dessous :

On souhaite à présent une fonction tri_dictatorial_chaine qui prend en
paramètre une instance de liste chaînée chaine et qui modifie cette liste chaînée
démarrant en suivant l’algorithme du pseudo-tri dictatorial. La fonction ne renvoie rien.

10. Recopier et compléter la fonction tri_dictatorial_chaine ci-dessous.

 def tri_dictatorial_chaine(chaine):
 maillon = chaine.tete
 while maillon.suivant ... :
 if maillon.valeur ...
 maillon = ...
 else:
 maillon.suivant = ...

Partie C

Une pile p, éventuellement vide, stocke des éléments entiers qu’on souhaite trier selon
le pseudo-tri dictatorial. À l’issue du tri, on veut que cette pile soit modifiée et ne
contienne plus que des éléments triés.

11. Rappeler le principe du fonctionnement d’une pile.

12. Remettre dans l’ordre les lignes ci-dessous afin d’obtenir l’algorithme attendu,
en respectant une tabulation lorsque la ligne est à l’intérieur d’un bloc si ou
tant que.

– si p n’est pas vide :

• tant que p n’est pas vide :

• tant que p2 n’est pas vide :

• on dépile p, on stocke l’élément obtenu dans la variable
dernier_conservé et on l’empile dans p2 ;

• on crée une pile intermédiaire p2 vide ;

EducN_MDDM3MT2Y3MTAexMj5MyMmjAyNT6EyMTUOxMDrU4MZTUg

25-NSIPE4 Page : 14 / 14

– on dépile p et on stocke l’élément obtenu dans la variable
candidat ;

– si candidat est supérieure ou égal à
dernier_conservé :

– on dépile p2 et on empile l’élément obtenu dans p ;

• dernier_conservé prend la valeur de
candidat et l’empile dans p2

On suppose maintenant que l’on dispose d’une classe Pile implémentant une
structure de pile. L’appel help(Pile) entraîne l’affichage suivant :

Help on class Pile in module __main__:

class Pile(builtins.object)
 | Methods defined here:
 |
 | __init__(self)
 | Initialize self. See help(type(self)) for accurate
signature.
 |
 | __str__(self)
 | Return str(self).
 |
 | depiler(self)
 |
 | empiler(self, elt)
 |
 | est_vide(self)

13. Écrire en Python la fonction tri_dictatorial_pile qui prend en paramètre
p une instance de Pile et modifie cette pile afin qu’elle ne conserve que des
éléments triés selon le pseudo-tri dictatorial.

	BACCALAURÉAT GÉNÉRAL
	ÉPREUVE D’ENSEIGNEMENT DE SPÉCIALITÉ
	SESSION 2025

	NUMÉRIQUE ET SCIENCES INFORMATIQUES
	Durée de l’épreuve : 3 heures 30
	L’usage de la calculatrice n’est pas autorisé.
	Dès que ce sujet vous est remis, assurez-vous qu’il est complet.
	Ce sujet comporte 14 pages numérotées de 1/14 à 14/14.
	Le sujet est composé de trois exercices indépendants.

	Exercice 1 (6 points)
	Exercice 2 (6 points)
	Partie A : Réseau et adressage
	Partie B : Programmation d’un protocole de routage
	Partie C : Utilisation du protocole OSPF

	Exercice 3 (8 points)
	Partie A
	Partie B
	Partie C

